

PREFACE

When I started as Assistant Professor (lecturer) at Dania Academy, Randers,
Denmark, one of my first tasks was to find books for the students at the
Automation Technology degree course.

It turned out to be particularly difficult to find relevant material related to
programming in Structured Text (ST). Books with hundreds of pages would
only contain a few pages about ST programming, and only at a very
theoretical level.

My students enjoy learning ST programming from practical examples
and methods. In January 2017, I began work to fill this gap by developing
new teaching material under the working title of:

”Get Started with Structured Text”

Whilst using the material in my lectures, it has continuously been updated
and extended. There has been high demand for the material among my
students, and I have now turned it into a book for other interested readers to
benefit from.

It is my hope that you will enjoy this book.

I would like to extend my gratitude to my students, fellow lecturers and
colleagues for feedback and inspiration.

Comments, complaints, compliments and suggestions are welcome and
appreciated.
Please, send them to TomMejerAntonsen@gmail.com

First edition issued June 2018

The 3rd edition has been updated and expanded with many of the
suggestions and questions that readers and students have come up with,
including the desire for many more illustrations and program examples.

mailto:TomMejerAntonsen@gmail.com

Please enjoy!

Tom Mejer Antonsen

Randers, Denmark (June 2020)

Table of contents

1. INTRODUCTION
1.1 BACKGROUND FOR ST
1.2 PREREQUISITES FOR LEARNING ST PROGRAMMING

1.3 FOUNDATION OF KNOWLEDGE

1.4 ADVANTAGES OF ST PROGRAMMING

1.5 DISADVANTAGES OF ST PROGRAMMING

2. HOW THE PLC EXECUTES PLC CODE

3. COMMENTS IN THE PROGRAMMING CODE

4. DATA TYPES
4.1 ELEMENTARY DATA TYPES (INT, REAL, BOOL)
4.2 USER DEFINED DATA TYPES

4.3 ENUMERATED DATA TYPE, ENUM
4.4 STRUCTURED DATA TYPE, STRUCT
4.5 COLLECTION OF VALUES WITH SAME DATA TYPE, ARRAY

5. VARIABLE SCOPE
5.1 EXAMPLE: VARIABLES, SCOPE AND IO-MODULES

6. NAMING THE VARIABLES
6.1 VARIABLES WITH UNIT OF MEASUREMENT

6.2 VARIABLES WITH FIXED VALUES (CONSTANT)

7. OPERATORS, MATH AND LOGIC
7.1 ARITHMETIC OPERATORS (+, -, *, /)
7.2 RELATIONAL OPERATORS (=, <, <=, >, >=, <>)
7.3 NUMERIC OPERATORS (MATH FUNCTIONS)

7.4 LOGIC OPERATORS (AND, OR, XOR, NOT)
7.5 LOGIC, MATH FORMULAS AND USE OF PARENTHESES ()

8. VARIABLE ASSIGNMENT
8.1 MATH CALCULATIONS CHALLENGE

8.2 DIVISION BY ZERO

8.3 CALCULATING WITH REAL AND INT VARIABLES

8.4 DECIMAL ERRORS WHEN USING REAL
8.5 DATA COMMUNICATION (TRANSFER OF VARIABLES)
8.6 DATA TYPE CONVERSION FUNCTIONS

8.7 FINDING BINARY VALUES OF AN INTEGER (MASKING BIT)
8.8 VALVE MATRIX

8.9 ROUNDING A REAL TO 2 DECIMALS (2 DIGIT REAL)

9. 9 BASIC ST PROGRAMMING
9.1 IF-THEN-ELSE STATEMENT

9.1.1 EXAMPLE: Motor control with self holding relay
9.1.2 EXAMPLE: Manually operated tank control
9.1.3 EXAMPLE: IF-THEN-ELSE open and close valve
9.1.4 EXAMPLE: Robot control for packing items

9.2 CASE STATEMENT

9.2.1 EXAMPLE: CASE – Setting the motor speed
9.2.2 EXAMPLE: CASE – For executing programs
9.2.3 EXAMPLE: CASE – Recognizing numbers

9.3 ITERATION STATEMENT, LOOPS
9.4 FOR-DO STATEMENT

9.4.1 EXAMPLE: FOR – A loop running 4 times
9.4.2 EXAMPLE: FOR – LOOP and 3D ARRAY
9.4.3 EXAMPLE: Calculation of the average value
9.4.4 EXAMPLE: Find the lowest value in an array of
numbers
9.4.5 EXAMPLE: Sorting numbers inside an ARRAY

10. SPLITTING UP THE PLC PROGRAM
10.1 PROGRAMMODULES

10.2 FUNCTIONS

10.3 FUNCTION (FC) AND FUNCTION BLOCK (FB)
10.4 DESIGN GUIDE FOR IMPLEMENTATION OF A FUNCTION

10.4.1 EXAMPLE: FC for conversion of temperature
10.4.2 EXAMPLE: FC to calculate average
10.4.3 EXAMPLE: FC for level measurement in tank
10.4.4 EXAMPEL: FC to linear scaling of sensor signal

11. WORKING WITH TEXT AND CHARS, STRING
11.1 EXAMPLE: FC WITH STRING
11.2 EXAMPLE: PROGRAM STRUCTURE FOR LANGUAGE CHANGE

11.3 STANDARD FUNCTIONS, STRING
11.4 EXAMPLE: FC FIND NUMBERS IN A STRING
11.5 FB: OPTIMIZE INSERTION OF VALUES INTO STRUCT

12. BUILT-IN STANDARD FUNCTIONS
12.1 FIRST PROGRAM EXECUTION: FIRST SCANBIT

12.2 EDGE DETECTION (ONE SHOT): R_TRIG, F_TRIG
12.2.1 EXAMPEL FB: One Shot rising detection

12.3 COUNTING FUNCTIONS: CTU, CTD, CTUD
12.3.1 EXAMPLE: Counting of items on a conveyor belt
12.3.2 EXAMPLE FC: Instrument pulse counter

12.4 REPEATED PROGRAM ‘CALLS’ AND TIMER DELAY: TON, TOF
12.4.1 EXAMPLE: Using the program scan as timer
12.4.2 EXAMPLE: Function block for Flashing Light
12.4.3 EXAMPLE FC: Time delay on digital alarms
12.4.4 EXAMPLE FC: Monitoring of analog values and
alarms
12.4.5 EXAMPLE FB: Pulse pause function
12.4.6 EXAMPLE FB: A timer with a pause function

13. 13 SPECIAL FUNCTIONS AND PROGRAM STRUCTURES
13.1 SIMPLE QUEUE STRUCTURE

13.2 FIF0 – FIRST IN FIRST OUT

13.3 GENERATING RANDOM NUMBERS (RND, RANDOMIZE)
13.4 DIGITAL LOW-PASS FILTER (LP-FILTER)
13.5 SIMULATION SIGNALS FOR TESTING OF PROGRAM CODE

13.6 CONVEYOR BELT WITH SEQUENCE CONTROL

13.7 PUMP CONTROL WITH TWO PUMPS

13.8 PUMP CONTROL WITH SEQUENCE CONTROL

13.9 AUTOMATICALLY AND MANUALLY OPERATED PUMP CONTROL

13.10 CALCULATING TANK VOLUME, CYLINDER ON HEMISPHERE

13.11 PLC CONTROL FOR PUMPING WELL STATION WITH 6 PUMPS

13.12 EXAMPLE: HEATING OF LIQUID IN A TANK

13.13 EXAMPLE: FC TOGGLE SWITCH (TWO-WAY SWITCH)
13.14 EXAMPLE: 3D CAR PARK CONTROLLED BY A ROBOT

13.15 EXAMPLE: CONFIGURABLE CAR WASH CONTROL

13.16 EXAMPLE: ADAPT PUMP SPEED TO SAVE ENERGY

13.17 PLC CONTROL OF ROBOT AND CNC MACHINE

14. FROM LADDER DIAGRAM TO ST-PROGRAMMING

15. BEST PRACTICE ST-PROGRAMMING
15.1 TABULATION OF TEXT AND PLACING OF SPACE
15.2 EMPTY LINES BETWEEN CODE

15.3 AVOID SPAGHETTI CODE

15.4 GOOD PROGRAM STRUCTURE

15.5 THE USE OF VARIABLES

15.6 MISCELLANEOUS

15.7 CODE SHARING ON THE INTERNET

15.8 OOP – OBJECT-ORIENTED PROGRAMMING

16. GUIDE AND HELP DURING ST-PROGRAMMING
16.1 GUIDE TO PROGRAMMING EXERCISES

16.2 PROGRAMMING AND TROUBLESHOOTING TIPS

16.3 MODULE TEST AND SIMULATION OF CONNECTED EQUIPMENT

17. INDEX

1 Introduction

This book gives an introduction to the programming language Structured
Text (ST) which is used in Programmable Logic Controllers (PLC) and
Programmable Automation Controllers (PAC).

The book can be used for all PLC types and PLC brands following the open
international standard IEC 61131 part 3: programming languages.

In a Siemens PLC, the programming language is called Structured Control
Language (SCL). SCL may differ slightly from programming in ST.

The book systematically describes basic programming, including advice
and practical examples based on the author’s extensive industrial
experience.

Explanations to the PLC programming code with an emphasis on writing
stable, robust, readable, structured and clean code are included in the book.
The aim of the book is to enable the reader to write PLC code, which does
not require a specific PLC type and can be reused across multiple types of
PLCs.

It is recommended to read the entire book to gain an overview of its
content, and then use the book as a reference moving forward.

The book was developed for the full-time “Academy Profession (AP)
Graduate in Automation Engineering” course and the part-time “AP Degree
in Automation and Operation” course at the Dania Academy, Randers,
Denmark.

The book is based on the IEC 61131-3 standard. PLC suppliers and
manufactures interpret the standard in different ways and not all follow the
standard consistently. This means that some of the program examples in this
book may not work properly in the PLC type you are using.

Unfortunately the author is not available for support in connection with
programming code within this book.

1.1 Background for ST

ST is a high-level programming language similar to Pascal Programming.
Pascal Programming was widely used from 1980 to approx. 2000 – a period
in which many companies started developing software for PC running on
DOS (Disk Operating System), and later software running on Windows.

ST was developed and published by the International Electrotechnical
Commission (IEC) in IEC 61131-3 International Standard in 1993. The
standard consists of five PLC programming languages of which the Ladder
Diagram (LD) language is the most well-known and commonly used. In
addition to ST and LD, the other PLC programming languages include
Function Block Diagram (FBD), Instruction List (IL) samt Sequential
Function Chart (SFC).

Since about 2010 the usage of ST programming for PLCs has become
widespread across Denmark, and many companies are now purely
delivering PLCs programmed in ST. This means that the demand for ST
programming capabilities across the industry has increased. This book is
part of educating a workforce to fill this demand.

1.2 Prerequisites for learning ST programming

It is not necessary to know how to program in LD or the other PLC
programming languages when learning ST programming. However, a
certain level of knowledge of mathematics, mechanics, electronics,
automation solutions and basic PLC is required to be able to learn ST
programming.

Students with knowledge of a high-level programming language (e.g. VB,
C++, C#, Python) will be able to learn ST relatively easy, due to the
similarities in coding structures. The program execution inside a PLC is

different compared to a traditional program or App running on a PC or a
smartphone.

Like other text programming languages, the student can expect to be
proficient in the language within three to five years.

1.3 Foundation of knowledge

The author has 25 years’ industrial experience with the specification,
development and delivery of complex control systems and supervision
systems. Of the 25 years, the author has 7 years’ experience with Pascal
Programing and 12 years within automation solutions and systems
involving PLC. This experience includes employment in four international
companies and delivery of more than a thousand control system solutions in
20 different countries. This experience provides an important base for the
content of this book

In recent years the author has been teaching PLC Systems at degree level in
Denmark. The students have from 0 to 20 years of practical and/or
vocational experience within PLC, automation and technological services.
The internet, the standard DS/EN 61131-3 and a series of books on PLC
programming have been utilized as inspiration for this book.

The material for this book was developed with feedback from lecturers and
students attending the “Academy Profession (AP) Graduate in Automation
Engineering” course and “AP Degree in Automation and Operation” course
at the Dania Academy, Randers, Denmark. The content has been updated to
answer the questions which the students typically ask during the course.

The author has a Bachelor of Science in Electrical Engineering (B.Sc.E.E.)
from Aarhus University School of Engineering, Denmark.

1.4 Advantages of ST programming

ST is a flexible and universal programming language. As ST programming
code is based on text and not graphics like LD, the code can easily be

copied between different PLC types, and even be sent by e-mail.

The ST programming code is similar to text sentences, and work is
executed in the same way as a word processor program such as Microsoft
Word which makes it easier to work on. Consequently, the same working
methods are applied when using a word processor program or a text editor.

Because of its very structured nature, ST is ideal for tasks based on
complex mathematics, code reuse or decision-making (e.g. automatic
energy optimization, algorithms, data collection and regulation in process
plants).

Having the experience with PLC Programming, transitioning to other
programming languages within PLCs and automation will be easier
including robotics or Visual Basic programming.

Within recent years an increasing number of companies have switched to
ST programming. This is due to a number of advantages provided within
the ST programming language compared to the four other PLC
programming languages (LD, SFC, FBD and IL).

The advantages of the ST programming language are:

ST Programming code can relatively easily be copied
between different PLC types and brands1).

It is the most convenient PLC language for mathematical
calculations, formulas and algorithms2), and for managing
large amounts of data (Big Data).

PLC solutions are more in demand today than 20 years ago3).

Many widespread programming languages (C++, C#, VB,
PASCAL) share similarities with the ST program structure.

Other PLC languages (LD, SFC, and FBD) require parts of
the program to be written in ST anyway.

Documentation of the ST PLC programming code requires
less space during documentation, description and printing

compared to other PLC programming languages.

It is the easiest PLC language to version control via
comments in the program code or via GIT or Subversion4).

The PLC programming language Instruction List (IL) which is applied for
complex PLC Controls is expected to be outdated within year 2020/2021
(cf. IEC 61131-3 section 7.2.1). It is expected that ST will replace these
solutions.

1.5 Disadvantages of ST programming

A big disadvantage is the fact that many technicians and electricians are
only capable of programming in LD. It is difficult for them to understand
ST program code because it is written in text and is not graphical like the
LD program code5).

As a certain level of experience in structuring a program is required,
programming in ST can easily be confusing.

Inexperienced people may have difficulties in fault-finding (debug) in an
ST program.

Small (Micro) PLCs do normally not allow ST Programming.

It is not normally possible to apply ST Programming in a safety PLC6).

Reaching expert level in ST programming often takes three to five years
upon completion of a formal course or education.

1) This is possible by using copy-paste and minor corrections. For example, a Siemens PLC uses the
sign # before naming local variables, and Allen Bradley PLC uses a different syntax to make function
‘calls’.

2) Mathematical calculations are similar to mathematical formulas. Chapter 8.1 page 47.

3) There is more focus on energy optimization, automatic operation and data collection today. These
are all solutions which requires more complex PLC coding than an ordinary ‘relay/circuit breaker’
with start/stop functions.

4) The tools GIT and Subversion are practical tools which allows the user to track (follow)
corrections and extensions in the PLC Code. This makes it possible to commit current changes and
fetch earlier versions of the PLC Code.

2 How the PLC executes PLC code

It is important to know how the PLC executes the program code when
writing the program. A PLC executes the program in real-time, which
means that the program modules must be executed within a short time-
frame. The program modules are executed at a fixed time interval (the PLC
scan time) e.g. 50 [ms]. Some of the fastest PLCs may have a scan time of 1
[μs].

Program modules can have different scan times e.g. 500 [ms] or 1000 [ms].
Some sensor input values do not change quickly (e.g. a temperature sensor).
Which means that it is not necessary to have fast scan time for all program
modules. A large program with many calculations takes a longer time to
execute. This means that different programs will require different lengths of
scan time. See also chapter 10.1, page →.

The basic mode of operation for a PLC:

The flow diagram shows the following points:

1. When power is turned on the PLC will start (boot up) and load the
operating system, called firmware in a PLC system. This will ensure
that the PLC program knows the connected hardware (HW).

2. After startup, all output modules are set to its initialization values. It is
important that all outputs have the correct startup values so there are
no unintended actions before the PLC program has started.

3. A data communication link has now been created via a network
(fieldbus). Variables are received and sent out to other units (e.g.
control panels, other control systems or instruments). There are many
types of fieldbus network systems. Some of the most used include
Profibus, Profinet and Ethernet/IP. However, most fieldbuses are built
with similar functionality, and they all work in similar ways.

4. Values from all sensors, switches, instruments and components on the
machine or plant are now received from the connected input modules.

5. Dependent on the scan time all PLC programs will be executed once.
Programs are split up as follows:

Program modules. See chapter 10.1, page →
Functions. See chapter 10.2, page →
Functions (FC) and Functions blocks (FB). Chapter10.3, page →

Programs must be split up in order to create a good program structure.

6. Values are written to all output modules. Values could include new
settings to motors/engines, valves, lamps and instruments.

7. Step 3 to 6 will be repeated. This is one program scan.

The execution of the program only stops if:

The PLC is set to STOP operation mode
If a run time error in the program occurs
The PLC is powered off or loses power unintentionally

5) To help learners who are already proficient (good) in the LD programming language, and would
like to start programming in ST, Chapter 14 page 178) will be a good starting point. The chapter
provides examples of different programs written in LD and the equivalent using the ST.

6) A safety PLC is a separate PLC or a dedicated area in an ordinary PLC used to ensure the stop of
the machine or plant when the emergency stop device is activated.

3 Comments in the programming code

Comments are a very important part of programming. Comments in the
programming code assist you and your colleague when later adding to the
code.

Use comments to explain what a specific PLC code performs, so you can
remember it later yourself. In many cases, the PLC code can be self-
explanatory, therefore it is best only to make comments when the code is
complex.

There are two types of comments in ST:

Line Comment:

// Line comment. Forward-slash is written in front of EVERY line.
// Here you can write comments

//You can write comments before a code section starts
IF S1 THEN

K1:= TRUE; //Or write comments after the code at the same line
END_IF;

//Do not execute the code below
//K2:= B2

Line comments can also be used to comment out PLC code so that it will
not be executed. The code is lost if it is deleted, therefore place // in the
beginning of the line instead of deleting the code. By doing this, the code is
still available, but not executed

Line comments can only be placed on the same line in front of or after
code.

Block Comment:

(* Block comment is initiated by a start parenthesis and a star. It is
finalized by a star and end parentheses. They are used for making
more lines of PLC code inactive i.e. create multiplecomment lines *)

Comments placed between (* and *) are called block comments and are
used in order to remove/sort out more lines of code or to write comments
filling up more lines.

Comments are essential at the start of any program module or function. This
ensures that other programmers can understand the intended functionality of
the program quickly and easily, without having to trawl through the entire
code.

It is best practice to maintain a version log at the top of the program
module which should include any changes made to code and the author of
these:

///
/// OP002 Parking house
///
// Action for each connected sensor
//
//***
// Version 1.0, Created. Date 06.05.2020 TMA
// Version 1.1, TempVar3 changed 10.05.2020 TMA
// Version 1.2, Button S1 added 1.05.2020 TMA

IF S1 THEN //First line of PLC code
K1:= TRUE;

END_IF;

//SetLamps(); //Do not run the SetLamps program module

A few PLC types cannot handle the special localized language characters
such as æøå/ÆØÅ in the comment lines. As localized characters are not
accepted by the PLC programming tool, It is therefore recommended to use

the English alphabet in both the comment lines and the programming code.
Due to this many companies choose to write their PLC code in English.

IMPORTANT! Do remember to correct the comments and version log if
anything is later changed in the PLC code.

TIPS: Before starting the actual programming phase, you can use
comments to gain a better understanding of the intended
functionality of the program. This could help you to achieve more
structure within the code, and help readers of the code understand
it more easily.

4 Data types

Just like other programming languages, the IEC 61131-3 programming
standard provides many different data types which include both elementary
and complex ones. A data type defines how much memory capacity is needed
by a variable value and by that, the largest and smallest value in the variable.

4.1 Elementary data types (INT, REAL, BOOL)

The following (examples) simple data types are standard in any PLC
controller:
Data type Bits Numeral system Note Lowest and highest value Eksempel
BOOL (Bit) 1 Boolean (Binary) FALSE/TRUE or 0 to 1 TRUE
BYTE 8 HEX (Hexadecimal) 16#0 to 16#FF 16#10
WORD 16 Binary 2#0 to 2#1111111111111111 2#0001000000000000
UINT 16 HEX (Hexadecimal) 16#0 to 16#FFFF 16#1000

BCD (Binary-Coded Decimal) C#0 to C#999 C#998
Unsigned Integer (positive
numbers)

0 to 65535 564

DWORD (Double
word)

32 Binary 2#0 to 2#1111111111111111
1111111111111111

2#10000001000110001
011101101111111

HEX (Hexadecimal) 16#00000000 to 16#FFFFFFFF 16#00A21234
Unsigned Double word (integer) 0 to 4294967295 (4.29 billion) 435

INT (Integer) 16 Signed integer -32768 to 32767 101
DINT (Double
integer)

32 Signed double integer -2147483648 to 2147483647
(2.1 billion)

107

REAL (Floating-
point number)

32 IEEE 754 Floating-point
number (Decimal tal)

1 Lowest value:
+/-3.402823E+38
Highest value: +/-1.175495E-38

1.234567e+13

LREAL (Long Real) 64 Dobbelt Float (Decimal tal)
IEEE 754

Lowest:-1.7976931348623E308
Highest:
1.79769313486232E308

3432.54

TIME (IEC time)
LTime

32
64

IEC time
Step in 1 [ms] or
Step in 1 [ns]

4 T#1ns
to
T#24d20h31m23s

TIME#10s
T#10d14h11m23s
T#5s12ms23us300ns

DATE (IEC date) 16 IEC day,
step 1 day

D#1990-1-1 to
D#2168-12-31

D#1996-3-15
DATE#1996-3-15

TIME_OF_DAY
(Time)

32 Time in a step of 1 [ms] 4 TOD#0:0:0.0 to
TOD#23:59:59.999

TOD#1:10:3.3
TIME_OF_DAY#1:10:3.3

CHAR WCHAR 8
16

ASCII characters (letter or sign) 2 'A', 'B' etc. 'E'

STRING Text 3 Up to 255 characters ”This is a text”

All variables must have a data type. If a variable is given a value outside the
minimum and maximum value range of the data type, a run time error may
occur and consequently the PLC may stop the program execution. This may
again lead to strange behavior when executing the program (the program may
seem unstable).

A few PLC types provide more data types than the ones listed above. In
general, it is recommended use only a few data types so that the PLC code
can be copied in an easier way to other PLC types. Some special data types
such as S7TIME, LWORD and ULINT cannot be used by all PLC types.
This means that copying PLC code with special datatypes, or upgrading to a
larger PLC, may take a lot of work and risk introducing errors to the code.

The three most used data types are BOOL, INT and REAL. The reason why
INT is used more often than WORD is that INT provides the same amount
of data as the bit-size in a PLC making it a fast data type. On the other hand,
if REAL is used, the PLC will auto-generate underlying machine code as the
PLC can only work with integers. The disadvantage of working with INT is
when exchanging values between computers where e.g. one computer is a
PLC running on a 16-bit operating system, and the second is running on a 64-
bit operating system. The second computer could also be a small 8-bit
computer (an embedded computer), used inside a sensor, a measuring
instrument or equipment for analyzing process values. Read more in chapter
8.5, page →.

Data type table notes
1) A REAL integer contains at most 7 influential digits. This means that if

a variable is allocated the value of 1234.56789, the variable is not able to
contain all digits. The value will consequently be changed to the value of
1234.567 (7 digits). Some PLC types use 8 digits: 1234.5678.
In some PLC types these data types are named FLOAT.
Because computers may handle a REAL/FLOAT differently, some
challenges can occur when communicating between several computers.
In order to handle this, a REAL can be changed to an INT or DINT
variable by multiplying by 100, and when data is received in another
computer the variable has to be divided by 100. Using this method, a
decimal number including 2 digits can be transferred without any
problems. See more in Chapter 8.5, page →.

2) ASCII characters are typically used when texts are needed to be written
on e.g. user interfaces, data logging to files, communication between
instruments, data from a keyboard or other PLCs. Due to the fact that a
PLC operates with integers only, letters and signs each have a number in
an ASCII table.
The data type CHAR has 8 bits (may contain 255 different characters).
A CHAR data type may typically be used for 1 to 5 different languages
(countries). WCHAR has 16 bits and is applied for Unicode (ISO 10646,
Universal Coded Character Set). Unicode is used for international PLC
solutions.
WCHAR is typically used when the same PLC-code is applied in
several countries with different languages in the user interface.

3) A STRING consists of an ARRAY of CHAR and is normally set to 255
characters (CHARS)
See above-mentioned note 2).
Furthermore, see chapter 11, page 94.
WSTRING is applied for Unicode (ISO 10646, Universal Coded
Character Set) and consists of an ARRAY of WCHAR.
Note: Some PLC types provide a maximum of 80 characters in a
STRING, if the ARRAY is not limited e.g. 10. It is good practice in
programming to limit ARRAY so that unnecessary memory is not used.

4) TIME/DATE is calculated internally in a PLC as an integer, which
counts time from 1.1. 1970 at 00.00 and can therefore only be converted

to an integer. (See the documentation from the individual PLC-type)
A PLC gets its current time from an in-built electronic component in the
PLC hardware. However, its time indication is not very accurate. An
accurate time indication must be fetched from an atomic clock, which
allows a PLC to be fully automatic straight away if connected to the
internet. A PLC can then get its current time from an ordinary PC, e.g.
once a day. It is important that all PLCs on the network show the same
time so that alarms and stamping with date and hour of logged data
indicate the same time (e.g. event log – logging of changes made by the
user in the PLC control).

When a variable is assigned a value (set to a value), the value is normally (by
default) a decimal number. If the value is a binary number, 2# must be written
in front of the number, and if it is a HEX number, 16# must be written in
front of the number. E.g. 2#101 = 5 or 16#FF = 255.

When deciding on what data type to use for a variable, it is important to
know its maximum value capacity. Normally an INT data type is used for
counters. If INT is used as TACHO HOURS on a motor, the maximum value
of an INT can be a problem. TACHO HOURS is a counter showing the total
number of hours a motor has run, and is used to indicate when the service
interval has ended, and motor service is required. If for example the motor
runs 20 hours a day, and it has an expected life time of 10 years, the total
counter value will be reached as follows:

Hours within 24 hours*days per year*year = 20*365*10 = 73,000
(hours)

The problem is that the variable cannot be contained in the data type INT, as
INT has a maximum value of 32767. A double integer DINT must be used
instead, or even better a DWORD data type as it is able to contain an even
larger number.

DWORD may contain an integer value from 0 to 4.29 billion.

If an INT is used anyway, the variable will show: 7466 as the INT has two
‘overflows. An ‘overflow’ takes place every time the integer is higher than

32767 and at an ‘overflow’, the variable is reset to -32768 (which is the
lowest value for INT).

4.2 User defined data types

It is possible to define more advanced and complex data types to save time
when programming, and to obtain a better program structure. The data types
are named user defined or derived data types and are declared within TYPE
and END_TYPE.

There are three user defined data types: ENUM (Enumerated data type),
which is a list of constant numbers. STRUCT (Structured data type) which
group different variables in a structure. ARRAY contains a series of variables
having same data type.

NOTICE
If an absolute beginner starts programming in a PLC, it is important to know
that the derived data types are not necessary to use to make PLC programs
work. Only start using derived data types when greater experience in PLC
programming is gained.

The different user defined data types are explained in the following chapters.

4.3 Enumerated data type, ENUM

The enumerated data type ENUM contains a list of unique names. Names are
listed in parentheses, and must be meaningful with regard to their purpose.
The declaring begins with TYPE and ends with END_TYPE.

Example:

TYPE LightTYPE :
(RED, YELLOW, GREEN);

END_TYPE

The data type LightTYPE in the example above can either be RED,
YELLOW or GREEN. LightTYPE could be used to control a traffic light, an
operator signal lamp, a light tower (see picture) on a machine or as a status
on a valve.

LightTYPE will always take one of the defined types: RED, YELLOW or
GREEN.

An ENUM must be allocated a default value. A default value is required to
ensure the right value during start-up (initialization). In the example below
LightTYPE is initialized with the default value RED when the PLC is
powered up:

TYPE LightTYPE :
(RED, YELLOW, GREEN):= RED;

END_TYPE

The PLC-compiler (program which converts the ST program code to the PLC
machine code) automatically associate a number to each text in the ENUM.
The numbers are indexed starting from 0. This means that: RED = 0,
YELLOW = 1 and GREEN = 2. The automatic numbering of the ENUM

types is necessary as a CPU can only work in numbers. This also explains the
ENUM data type name as ENUM (enumeration) can be translated to
‘automatic numerical order’. This ENUM is used because it is easier for the
programmer to remember text instead of a number.

It is possible to define a fixed value for each name instead of automatic:

TYPE LightTYPE :
(RED:= 10, YELLOW:= 20, GREEN:= 30) := RED;

END_TYPE

The disadvantage of using ENUM is that all numbers are positioned in a
continuous order (indexed). If new names are added in the middle of the
sequence, the index is disrupted which will cause issues when ENUM
variables are exchanged between more PLCs or computers, as all devices
must be updated with the new PLC code at the same time.

Examples of use: Below are two variables, MotorLamp and Lamp, both
having the data type LightTYPE:

Lamp:= MotorLamp; //Here is Lamp set to red
MotorLamp:= LightTYPE.GREEN; //Set MotorLamp to green
Lamp:= MotorLamp; //Here is Lamp set to green

ENUM creates a better structure, but ENUM is not possible in all PLC types.

The alternative to ENUM is to use independent constants. See chapter 6.2,
page →.

4.4 Structured data type, STRUCT

A structured data type, STRUCT, is a composite data type used to group
more datatypes in a class/object. The structured data type is declared by using
the key words TYPE, STRUCT and END_STRUCT.

Each variable in a STRUCT needs to have a name followed by a colon,
and then the data type. Note that the declaring is ended by a semicolon.

Below a STRUCT is shown called Motor, containing four variables which
are all related to a motor. Speed (Motor speed), Temperature (measurement
inside the motor), Voltage (Power supply for the motor) and AlarmStatus:

TYPE Motor : //Example 1 STRUCT
STRUCT
Speed : INT; //Actual speed of the motor [RPM]
Temperature : REAL; //Temperature inside the motor [C]
Voltage : REAL; //The voltage of the motor [V]
AlarmStatus : BOOL; //Alarm if TRUE else FALSE
END_STRUCT;

END_TYPE

Motor

Note that comments are written after each variable which accurately describe
the functionality of the variable to the reader of the PLC program.
Furthermore, a unit is written in square brackets because the unit of different
variables is often not known. For example, the speed of a motor could be
measured in RPM (revolutions per minute), the frequency in Hz (Hertz) or in
percentages (0 to 100%).

When the variable is declared, comment lines are also used to describe the
behavior of the variable, as this is not always obvious or logical; e.g. the

AlarmStatus where it is not clear whether the alarm goes off when the
variable is TRUE or FALSE.

As mentioned in chapter 6.1, page →, the unit can be a part of the variable
name.

Some PLC types do not use text, as in the example above, when declaring a
STRUCT; instead they are declared (written) in a list and therefore the key
words: TYPE, STRUCT, END_STRUCT or END_TYPE will not appear
to the reader.

A structured data type may contain one or more other derived data types.
This can be seen in the example below:

TYPE Valve : //Example 2 STRUCT
STRUCT
DisplayColor : LightTYPE; //User defined TYPE
ValveState : BOOL; //Can be TRUE (open)

//or FALSE (closed)
Pressure : REAL; //Pressure in [Bar]
END_STRUCT;

END_TYPE

Ventil

In example 2 above the data type Valve consists of tree variables:

DisplayColor, ValveState (status of the valve: open or closed) and Pressure.
The variables Pressure and ValveState use the standard data types REAL

and BOOL, while the variable DisplayColor uses the data type LightTYPE,
which is defined in chapter 4.3, page →.

Example of a portable tank containing chemicals (IBC tank):

TYPE TankType : //Example 3 STRUCT
STRUCT
Liters : REAL := 1000; //Default tank size
LevelSensor : REAL; //Sensor at bottom
LevelSwitch : BOOL; //Float switch at bottom
END_STRUCT;

END_TYPE

Many variables in a PLC program can easily become confusing. Variables
belonging to the same component (object), the same domain, or the same
mode of operation may advantageously be grouped in a STRUCT. Grouping
variables makes it easier and quicker to set up and maintain many identical
components. This method of programming is called Object Oriented
Programming (OOP), and is often used when writing computer programs.

If a variable with the data type STRUCT is to be transferred to a function the
variable scope must be set to VAR_IN_OUT within the function. See chapter
5, page →.

4.5 Collection of values with same data type, ARRAY

An ARRAY is a structure, which can store a collection of values with the
same data type. The values are located side by side in memory which means
that it is simple to work on. An ARRAY always has a fixed length which
cannot be changed during the execution of the program. An ARRAY can be
set up and indexed by several dimensions.

You can write ARRAY programming code quickly, and it provides a good
programming structure. The challenge is getting the values in and out of the
ARRAY.

An ARRAY is also called a multi elementary data type.

Below example show an ARRAY, SpeedArray, which contains 6 positions
of the data type INT. To declare the 6 positions, use ARRAY followed by
square brackets including start end position number, separated by two dots as
shown below:

VAR SpeedArray :
ARRAY [1 .. 6] OF INT;

END_VAR

The first value in the array is located in position no. 1 and the last in position
no. 6. The name for the ARRAY in this example is Speed, which is added to
the text Array, so that any person working on the PLC code will easily know
that an ARRAY is used.

SpeedArray is a one-dimensional ARRAY and can be used where a
collection of many values with same data type is positioned in one long row.
Examples include:

Calculation of the average value (chapter 10.4.2, page →).
Handling of a queue (chapter 13.1, page →).
FIFO - First In First Out (chapter 13.2, page →).
Collection of data and sorting (chapter 9.4.5, page →)

An ARRAY can be used with all data types, including STRING, STRUCT
or functions.

Examples of the use of ARRAY can be found on pages 72, 74 or 126.

A two-dimensional ARRAY can be used on e.g. a parking lot (car park),
stock rack, a graph, a bar chart or a pivot table and can be set up as follows:

VAR Racking
ARRAY [1 .. 5, 1 .. 3] OF INT;

END_VAR

A three-dimensional ARRAY is defined as follows:

VAR PackOnPallet
ARRAY [1 .. 5, 1 .. 4, 1 .. 3] OF REAL;

END_VAR

Used e.g. for packages on a pallet (palletizing) or positions in a warehouse.

If you look at a three-dimensional ARRAY as an X, Y and Z system of
coordinates, the values from the above-mentioned example can be grouped as
follows:

X = 1 til 5, Y = 1 til 4, Z = 1 til 3.

The total amount of positions in PackOnPallet ARRAY is: 5*4*3 = 60
pieces. So this ARRAY contains 60 positions (elements).

An ARRAY can be defined with an index starting point of 0. The ARRAY
below contains 4 positions as position 0 (zero) and position 3 are included
when counting the number of positions in the array. It results in a more stable
program when arrays start from 0, because the array index pointer remain
uninitialized (not given an start value):

VAR MyArray1D
ARRAY [0 .. 3] OF INT;

END_VAR

Insert a single value in an ARRAY
In the below example the value 5 is inserted at position 4 in the one-
dimensional ARRAY SpeedArray:

SpeedArray [4] := 5;

Values can be inserted in the three-dimensional ARRAY PackOnPallet as
follows:

PackOnPallet [1, 1, 1] := 12.1;
PackOnPallet [5, 1, 3] := 43.9;
PackOnPallet [1, 4, 2] := 23.5;

For inserting multiple values in a 3D ARRAY, see chapter 9.4.2 page →.

Get a value from an array
In this example shows how to get a value from a one-dimensional ARRAY.
The value is located at position 2 in the array MyArray1D and copied to the
variable Var1:

Var1 := MyArray1D [2];
//Contents of Var1 is 12

Get a value from a three-dimensional ARRAY is carried out as follows:
A value is transferred (copied) to the variable Var3 with the value of 43.9:

Var3 := PackOnPallet [5, 1, 3];
//Contents of Var3 is 43.9

IMPORTANT: You must not assign (copy) a value to positions outside of
the ARRAY. If assigning a value to for example, position no. 10 in an
ARRAY containing only 6 positions, the PLC can stop the program
execution (Run Time Error). This is a common error/mistake when using
arrays for your code. To avoid assigning values to positions outside the
ARRAY use an IF statement as shown below:

Index:= 4; //Insert 5 at position 4
IF Index > 0 AND Index <= 6 THEN

SpeedArray [Index] := 5;
END_IF;

In the previous example, the low bound and upper bound of the array are
used directly. This can be a disadvantage when the array is used inside a
function or the lower and upper bounds have to be changed. Therefore, the
built-in standard functions LOWER_BOUND and UPPER_BOUND can be
used.
The two functions return the bound of the array and can be used as shown
below:

Index:= 4; //Insert 5 at position 4

IF Index >= LOWER_BOUND (SpeedArray, 1)
AND Index <= UPPER_BOUND(SpeedArray, 1) THEN
SpeedArray[Index]:= 5;

END_IF;

Direct and indirect addressing
For direct addressing in an array, numbers are used to retrieve the content at a
particular location in an array and for indirect addressing, a variable is used:

//Indirect addressing is using a variable

Index:= 4; //Index is an INT or a WORD data type
SpeedArray[Index]:= 5;

//Direct addressing when a number is used directly
SpeedArray[4]:= 5;

Data collection

An array is perfect for collecting data (data log) in a PLC controller. This
code collects the number of items produced from a machine:

The array is configured as shown:

VAR
DataCollect ARRAY [7 .. 16] OF WORD;

END_VAR

The array saves data from a range from 7 to 16 which corresponds to the
period during which the machine produces items. From 7 o'clock to 8 o'clock
the machine produces 15 items, between 8 o'clock and 9 o'clock the machine
produces 29 items, etc.

By collecting the number of items produced, it is easy to find out the periods
in which the machine has produced the most and the fewest items. The data
collected confirms how efficient the production is during different time
periodes.

An element in an array can only save one value. This example shows how an
array can contain multiple values, and how constant values are saved in an
array.

The example is a warehouse rack, controlled by a robot:

1 Starting point (homing position)

2 Distance, X-axis for each row
3 Distance, Y-axis for each shelf
4 Pallet with 1 box in location 3,1
5 Pallet with 2 boxes in location 2,2
6 Pallet with 4 boxes in location 4,3

Numbers at X-axis (2) and Y-axis (3) are predefined numbers to inform the
robot how far to go (distance) to place an item on a certain row and shelf in
the warehouse rack. Each axis uses an encoder to determine where a location
is. An encoder is a sensor that sends a pulse for distance traveled, and when
the correct number of pulses is received, the robot stops at the correct
location.

Each location in the warehouse rack contains several values and therefore a
STRUCT is created as shown to the right:

To add more values, add additional code lines under the Weight variable.

TYPE LocationTYPE
STRUCT
NoOfBox : WORD;

Weight : REAL;
END_STRUCT

END_TYPE

To handle the warehouse rack, the following variables are created:

VAR CONSTANT
StockSizeX: INT := 4; //Size x of the Stock
StockSizeY: INT := 3; //Size y of the Stock
StockEncodeX: ARRAY[1.. StockSizeX] OF INT := [235, 370, 505,
640]; //Encoder X values
StockEncodeY: ARRAY[1.. StockSizeY] OF INT := [0, 213, 355];
//Encoder Y values

END_VAR
VAR

Stock: ARRAY[1.. StockSizeX, 1.. StockSizeY] OF LocationTYPE;
//Location is a STRUCT

END_VAR

Inserting values for the pallet located at (6) is done like this:
Stock[4, 3].NoOfBox := 4; //Located at StockEncodeX[4] and
StockEncodeY[3]
Stock[4, 3].Weight := 1210.25; //Set weight

This example is based on a depalletizer:

A conveyor belt can have different states
and these are grouped in an ENUM:

TYPE ConveyorState :
(NONE, STOP,

RUN_CW, // Run clock wise
RUN_CCW, // Run counter clock wise
ALARM) := STOP; // Default set to stop mode

END_TYPE

By default the state is set to STOP to avoid the conveyor belt running
unintentionally when the PLC is powered up.

The variables for a conveyor belt are grouped into a STRUCT:

TYPE ConveyorTYPE :
STRUCT

State : ConveyorState; //State/mode
Speed_m_s : REAL; //Conveyor speed in [m/s]
Size : INT; //Conveyor size, 40 or 60

END_STRUCT
END_TYPE

Declaration of the conveyor belt variables and code examples are shown
below:

VAR
M1 : ConveyorTYPE; //Single conveyor
ConveyALL : ARRAY [4..6] OF ConveyorTYPE; //All conveyor

END_VAR

//Start M1 single conveyor
M1.State:= ConveyorState.RUN_CW;
//Set size of conveyor 5
ConveyALL[5].Size:= 40;
//Start conveyor 5
ConveyALL[5].State:= ConveyorState.RUN_CW;
//Copy all variables from conveyor 5 to conveyer 6.
ConveyALL[6]:= ConveyALL[5]; // Conveyor 6 is a copy of conveyor 5

5 Variable scope

Variables are key elements in programming. All variables must have a data
type. When a variable is created (declared) it must be configured to use a
variable scope. The variable scope sets the value’s behavior in the memory.
A table of the most common variable scopes in the PLC program is shown
below:

Scope Description

VAR

All local variables are declared between the
keywords VAR and END_VAR. The local variables
cannot be manipulated from outside the program
module or the function. NB: In some PLC types
VAR is replaced by “Static”

VAR_GLOBAL Global variable scope. Variables in this scope can be
accessed (called) from all program modules,
functions, Fieldbus (networks) and HMIs (user
interfaces).
The use of global variables should be kept to a
minimum as it makes the PLC code more complex
and harder to find errors.

VAR_INPUT Used by functions for variable input into a function.
See more in chapter

VAR_OUTPUT Used by functions to return variable values after the
value has been worked on/changed by the function.
See more in chapter 10.2 page →.

VAR_IN_OUT

Input and output variable scope for functions. An
address (a link) of the variable which is transferred
to the function. Changes are made directly to the
variable and not a copy of the variable as is the case
when using VAR_INPUT.
Used when a function has to work with a STRUCT
or ARRAY. This scope must be used carefully as the
function changes variables located outside the
function.
See more in chapter 10.2 page →.

VAR_EXTERNAL If a program module uses this scope on a variable,
the program module will be able to use the global
variable of the same name. Must be used with
caution.

VAR_TEMP A temporary variable scope in the function which
means that the contents of the variable disappears

when the function is finished. NB: In some PLC
types VAR_TEMP is replaced by “Local Temp”.

AT

Defines a memory location (mapping address) for a
variable. An example of this could be an I/O address
(the address on a PLC Input or Output). The input
could be named %IX 1.0, where %I indicate that it is
an input. The output name could be %QX 0.0, where
%Q indicate that it is an output.
Q is used as a letter for output (O is not used as it can
be confused with zero/nil).
See the example in chapter 5.1, page 28.
If a memory location is not definded, the PLC will
automatically allocate the next free internal address
in the memory.

CONSTANT Variables cannot be changed during runtime. Used
for numbers and values which must be fixed (not
changed) throughout the whole program.
It is important to use this variable scope, when the
same fixed value is used more than once in the same
PLC code.
See more in chapter 6.2, page →.

RETAIN

Retains the variable value after a power failure or
power loss. The variable is saved in memory (the
internal memory).
It is IMPORTANT to use this scope when a variable
contains hour counters, items counters or similar, as
these variable values must not be lost if PLC is
(accidentally) turned off.
See example in chapter 5.1, page 30.
Cannot be used in a FUNCTION.

PERSISTENT Similar to RETAIN. Variables are saved in an ASCII
file on the hard disc.
It is IMPORTANT to use this scope for values
containing hour counters, items counters or similar.
This is often only possible to use in a soft PLC.
Contents of variables persisted (saved) on a hard

drive are easy to move to other PLCs, e.g. if a PLC
has to be changed.
Cannot be used in a FUNCTION

END_VAR End of the variable scope declare section
Default (required)

5.1 EXAMPLE: Variables, Scope and IO-modules

This chapter shows an example with variable creation:

The example above shows four local variables in a program module named
DemoIO.

There is a variable IOdi with the data type BOOL with a direct connection
to port address no. 0 (first sensor input on the digital input card) on the
hardware input module (PLC IO-card) no. 1. It does not make sense to
initialize the variable as the value is determined by the sensor which is
connected to the input card.

The output variable IOdo is by default set to FALSE to be sure that the
output signal is set to zero (0 Voltage) when the PLC is turned on. It has a
direct connection to port address no. 0 on the hardware output module no. 0
(the card closest to the CPU).

The input variable IOai is an analogue value with the data type WORD. An
analogue input value card can be 16 bits but are typically 12 or 13 bits as
these are cheaper and may provide sufficient resolution. The variable has a
direct connection to port address no.1 on hardware output card no. 3

DemoIO has a local variable Demovar1 with the data type REAL.

The local variable Demovar1 is saved in memory in case of power failure
or if power is turned off as it is marked with RETAIN.

Some PLC-types do not have a direct address on input or output card as
shown above. In the PLC types, %I* and %Q* are written, as well as in a
mapping table, a list of connection between variables and the physical input
and output card, where it is possible to connect variables with the physical
input and output card.

6 Naming the variables

Naming variables (tags) is an important task in PLC programming. This
chapter and the following chapters contain guidelines and methods for
naming variables.

Companies often have their own guidelines and conventions (rules) for
variable naming, and the PLC programmer might have an opinion on how
this should be done too. However, the most important rule to follow is to
create meaningful variable names followed by a comment.

Variable names must begin with a letter after which the name can contain
combinations of letters, numbers and some symbols, such as ‘_’.
Variable names must not be the same names as built-in functions, standard
routines or user-defined functions. Variable names such as ARRAY, REAL or
INT would therefore be invalid.

Variable naming rules & requirements:

Invalid signs: ~@ ; " # % & *:< >? / \{| },. SPACE, TAB.

Invalid local language letters like Danish special signs:
æøåÆØÅ.

Use short indicative names: Some PLCs have a max character
count of 24.

Variable names cannot not start with a number.

Do not to use the letter O close to a number (it can be mistaken
for zero).

The PLC does not distinguish between lower- and upper-case
letters.

TIPS when naming with more words: First noun and then verb.

E.g. PumpRun, where Pump is a noun and Run is a verb
If a word has two nouns, begin naming with the big component:
E.g. PumpSensorError or TankSensorLevel

There are four methods of naming variables:

Hungarian Notation
Camel Case
Pascal Case
Snake Case

Hungarian Notation

Using this naming convention letters such as i, s, ar, b, are inserted at the
beginning of the variable name to indicate which data type is used. However,
if the variable is later changed to a different data type, this may cause issues
in the code as variable names must be changed in both the PLC code and its
documentation. Knowing the data type from the variable name might also be
unnecessary as many programming tools today show the data type of a
variable with a tool tip function (a small yellow box, appears if the computer
mouse is held over the variable name).

Hungarian notation letters include:
X = BOOL, i = INT, l = REAL, ar = ARRAY, s = STRING,
b = Bit, w= WORD, jw = DWORD, e= ENUM

Examples: iMotorSpeed (Speed on a motor with the data type INT)
xMotorAlarm (Alarm on the motor defined as the BOOL data

type)
sMotorAlarm (STRING containing a motor alarm text)
arMotors (ARRAY with motors)

Camel Case

The naming convention Camel Case is where the variable name begins with a
lowercase letter and the following words starts with an upper-case (capital)

letter:

Examples: flowMeasureWarningBit blowerStartBit
motorSpeed calculateError
sensorHighSignal motorInitFunction
sensorLow powerEstimated

Pascal Case

The naming convention Pascal Case is where all words in the variable name
starts with an upper-case letter.

Examples: FlowMeasureWarningBit BlowerStartBit
MotorSpeed CalculateError
SensorHighSignal MotorInitFunction
SensorLow PowerEstimated

This is probably the most commonly used method today, as it is easy to read,
quick to write and creates the shortest variable name.

Snake case

This naming convention uses underscore to differentiate between words.
Under-score is used as variable names cannot contain <SPACE>. However,
this method can be difficult to read and names tend to become too long. Some
PLC-types allow a maximum of 24 characters in a variable name which can
become a challenge when variable names become very long.

Examples: flow_measure_warning_bit blower_start_bit
timer_done_bit calculate_error
initial_motor_frequency motor_init_function
sensor_high_signal power_estimated

A big advantage of using Snake Case is when tools for automatic generation
of TAGS/variables are used in IO-Lists, electrical diagram drawings, PLC
and SCADA codes, as “_” can easily be replaced with “.” via the search-and-
replace commands.

For abbreviations only use standard abbreviations such as Cal for calculate,
Avg for average or Cmd for command.

If specific company or your own abbreviations are used, a comment must
be written in the code or where the variable is created (defined), otherwise it
might be difficult for readers of the code to figure out what the abbreviation
means.

Below you see two identical PLC code examples where Pascal Code and
Snake Case are used to create variable names. Consider which PLC code is
the simplest to read (the one on the left or on the right):

IF TankLevel >= EmptyLevel
THEN

IF tank_level >= empty_level
THEN

ValveOpen := TRUE; valve_open := TRUE;
IF ValveError = TRUE THEN IF valve_error = TRUE THEN
ValveOpen := FALSE; valve_open := FALSE;

END_IF; END_IF;
END_IF; END_IF;

Choosing between naming conventions

Which of the naming conventions is the best one is often a matter of
opinion and is influenced by the methods the programmer has used
before.

It is very important to choose meaningful names for variables. An example
could be a variable which shows the status for pump no. 141. The pump
could be given either of the following names:

Pump_Status_141, Status_141, P141_Status, Pump141Status,
PumpStatus_141, P141S, osv.

Pump141Status is the best choice as the noun appears first in the name. The
number of the pump (141), linked to the noun, appears after the noun (Pump)
and finally the verb (Status). Furthermore, Pascal Case is chosen as the
naming method because it creates short readable variable names.

Variable names including only one letter i, j, x, y, z, k, n are typically used for
iterative variable (e.g. counters and loops) and index/pointers in ARRAY. It
is faster to write a single letter than to write e.g. ArrayIndex. Often x, y and
z are used in coordinate systems and 3D array.

Variable names such as Temp1 and Temp2 can be applied as temporary
variables. These should not be used often, as they do not tell the reader what
the variable is – i.e. the names are not meaningful.

Variables with names containing words such as New and Changed must be
used carefully, because they are not new to the programmer who will be
working on the PLC code later on.

Some programmers prefer to use the data type as part of the variable name,
e.g. Int_Number_of_Run and Real_Initial_Temperature. This is somewhat
similar to the Hungarian Notation but creates long names and can cause
issues if the data type is changed later on.

Adding a unique number in front of each variable name makes the variables
easier to identify and find in the code and documentation:

B8040_MotorSpeed S213_PumpAlarm
B8041_MotorCurrent S101_PumpSpeed
B8044_MotorPower S001_SoftWareVersion
B9000_ValueToHMI S501_ReadFieldbusData

We have now covered different ways of naming variables. The methods can,
however, easily be used for the naming of functions, function blocks and
program modules.

Some programmers write fb and fc in front of their own functions and
function blocks:

fbCalculateArea fcArrayFindMin
fcMotorStatus fcArrayFindMax

Many built-in standard functions and routines do not use fb and fc in the
names, which makes it difficult to be consistent.

Names such as B1, B2, B3, B4 etc. completely lack meaning and should not
be used unless they follow logic used in the problem statement (the control
requirement specification or functional description). The names are used to
reduce the page space requirements of the book.

When naming a STRUCT (see chapter 4.4, page →) TYPE can
advantageously be added to the name to make it is easy to see that STRUCT
is used.

Alarm texts can be of both the data type STRING consisting of text or INT
for alarm numbers. Multiple languages can be displayed on the control panel
at the same time:

sAlarmMotorLoad_DK ”Alarm motor overbelastet”
sAlarmMotorLoad_UK ”Alarm motor overload”
iAlarmMotorLoad 12004

Many companies within the process industry (dairies, breweries, the medical
industry, the oil industry) follow the S88 naming standard (ANSI/ISA-88).
This standard is focused on the sensor type and the installation location when
creating names. The standard covers the IO-list, the control specification, the
PLC program and test documents. Using the same naming standard of the
variables in the entire control system obviously creates fewer
misunderstandings and better quality, as well as making it easier to have a
good overview of all variables, the PLC code and the documentation.

Examples: FZ.MM01.UE01.PO3 FZ_MM01_UE01_PO3
FZ.MM02.UE01.M01 FZ_MM02_UE01_M01
FZ.MM02.UE01.TT01 FZ_MM02_UE01_TT01

In the example above PO3 is the “Control Module”, UE01 is the “Equipment
Module” and MM01 is the “Process Cell” according to the S88 naming
standard.

6.1 Variables with unit of measurement

It is often necessary to connect a variable to a unit of measurement. If for
example a variable is used to represent a temperature, the temperature must
be stated in oC (degrees Centigrade/Celsius) or oF (degrees Fahrenheit).

It will help the programmer if the unit is added to the variable name to make
it visible during the programming phase. A variable measuring temperature in
degrees Centigrade can be named MeasureTemperatureC, where C
indicates the unit. Also write the unit in the commentary field where the
variable is created.

Examples of other variables needing a unit of measurement:

Variable Potential units

Time, period #1) us, s, seconds, minutes, hours, days, week, year

Speed m/s, km/t, km/h, rpm, %, mph, mm/s, tf/s
Amount kg, g, No., DKK, dollars, pcs., liters, bottle, box
Weight kg, pounds, lbs., g, tons, mg, %
Oxygen mg/l, %, g, l
Consumption W, kWh, Dkr, l, kg, $, m, m2, m3, A, k/j, g, l/h

It is important to obtain an overview of all measurement units. In some PLC
Control Systems, it is required that the PLC Control System itself is able to
change/convert units, especially if the same PLC Control system is used
globally. E.g. indicating whether a temperature is measured in oC or oF. This

is typically the case when development PLC Control Systems for the US and
Canadian markets, where it may be required to implement functionality
where temperature units can be changed online.

You can find conversion formulas online. Below example shows how to
convert oC to oF in a PLC program:

VarF:= (VarC * 9/5) + 32;

Units can be SI-units (m, kg, s, A); pay attention to the SI-prefix.

When displaying units on the human-machine interface (HMI), in data logs
for files and reports, etc. it is often required that values do not exceed two
decimal points. On a HMI, values with two decimal points are often
displayed with %f5.2 in the text field. The %f means a FLOAT (REAL) value
and 2 means two digits after the dot as shown:

23.45 [oC]

Units are often written with square brackets to increase the readability; e.g.
temperature [oC]. Use this both in the HMI and its documentation.

It makes sense to create one piece of reusable code to convert values from
one temperature unit to another. You can re-use this piece of code across
PLCs and customers. An example of this is shown in chapter 10.4.1, page →.

Note all PLC types save comments in the PLC, and when uploading the PLC
code to a PC the comments in variables fields can be lost. If the unit is part of
the variable name the units are not lost.

NOTE: Time, period #1)
Time can be difficult to work with when programming for international use.
There can be differences in which day of the month the countries shift
between summer and winter time, and whether Sundays are the first or last
day in a week. Finally, there are differences in when week number 1 in the
calendar year starts.

Examples of variables with units as part of their names:

TemperatureC
TemperatureF
MotorSpeedHz
MotorSpeedPercent
ConsumptionW
ConsumptionKWH
MotorUseA

Note that names may not contain the signs: % (percent), / (slash) and o

(degree).

6.2 Variables with fixed values (CONSTANT)

Variables, fixed and unchangeable during the program execution, must be
configured as a constant value (CONSTANT).They are used for numbers
used more than once in the same PLC code. This ensures the same value is
used everywhere in the code.

CONSTANT variable names are often written in CAPITAL letters
(uppercase).

When must a CONSTANT be used?
If a value is used several times, e.g. 25.4, which is the converting factor
between millimeters and inches, a constant must be defined to be used in the
code:

MILLI-METERS_PER_INCH = 25.4.

However, as it is not likely that the converting factor between millimeters and
inches needs changing, the programmer might prefer to use the number 25.4
rather than a long variable name. In case the number would need changing,
this could easily be done with a ‘search and replace’ command. However,
‘search and replace’ commands can be dangerous as it can make unintended
value changes. Using CONSTANT when naming variables creates safe and
stable programs. Furthermore, if constants are used, they will also contribute
to a self-explanatory program, because text is used instead of just a number
e.g. 25.4

When declaring and creating an ARRAY, the length must always be defined
as a CONSTANT. This is due to the risk of making the program unstable if
the length value is not changed throughout the code when the programmer
carries out potential updates to the ARRAY. The length of an ARRAY is
changed when e.g. testing the ARRAY. See an example chapter 9.4.3, page
→, where BufArrayMin and BufArrayMax are created as constants and
used with an array named BufArray. By adding Min and Max to the array
name, it is clear to see that they belong together:

Benefits of using
constants:

The PLC Code is more readable
Avoid errors when changing constants and
values
Save time when changing a value

Examples of using constants
PI:= 3.1415927
SECONDS_DAY:= 86400.0
ARRAY_MAX:= 10

If an integer value is used in a calculation with real numbers, write the integer
with a zero digit e.g. 3.0 in order to ensure that the CPU handles the
calculation correctly.

7 Operators, MATH and LOGIC

The following chapters describes the arithmetic, logic and relational
operators used in PLC programming.

A PLC has the same built-in math functions as known from a regular
calculator.

7.1 Arithmetic Operators (+, -, *, /)

Table of arithmetic operators (mathematical symbols):
Operator Explanation Function *) Examples where

V1 = 2
V2 = 5

?
Y =

+ Addition Y:= ADD(V1,V2); Y:= V1 + V2; 7
- Subtract Y:= SUB(V1,V2); Y:= V1 – V2; -3
* Multiply Y:= MUL(V1,V2); Y:= V1 * V2; 10
** Exponent Y:= EXPT(V1,V2); Y:= V1 ** V2; 32
/ Divide Y:= DIV(V1,V2); Y:= V1 / V2; 0,4

MOD Modulo Y:= MOD(V1,V2); Y:= V2 MOD V1; 1

V1, V2, Y can be numbers (integer or decimal numbers) or variables.

*) The functions are normally used in LD programming and not all PLC
types support the functions in ST programming.

The built-in functions ADD, SUB, MUL, EXPT and DIV from the LD
programming can be used. But in ST-programming it does, however, make
better sense to use the arithmetic operators (see table above) as it reads like
‘ordinary’ calculations.

Not all PLC types support the ** operator. Instead use the EXPT function:

Example: C=(2a-b)*2 => C:=(2**a-b)*a; => C:=(EXPT(2,a)-b)*a;

One of the strengths of ST programming is that math calculations are
similar to the methods used in math-programs and consequently the
calculations are simple to write, troubleshoot/debug and read in the PLC
code.

Examples of math operations can be seen on page → and page →.

To perform calculations, it is important to choose the right data types for the
variables. In most cases, a REAL variable will be the right data type.
If e.g. INT is used as a data type, the calculation can in some cases create a
variable overflow as the data type is too small and cannot contain the size
of the result of the calculation. This is due to the fact that the calculation
results in a larger number than can be contained in the chosen data type. See
also chapter 8.3, page →.

This can be illustrated in the following example:

Calculating: Y = V1**V2, (Y = V1V2)
where V1 = 10 og V2 er 10, result:
Y = 10000000000
The value Y is to large for an INT data type

IMPORTANT
Choose the right data type for the calculation.
If too large a data type like LREAL or LWORD is chosen, more memory
is used and it requires longer scan time than necessary.

7.2 Relational Operators (=, <, <=, >, >=, <>)

To compare the relation between two values (integer or decimal numbers)
use relational operators. The two values can be variables or numbers.
The result of the comparison is a value, which always has the data type
Boolean (BOOL) and can therefore only be TRUE or FALSE.

The relational operators are:

Operator Description
= Equal
< Less than

<= Less or equal
> Greater than

>= Greater than or equal
<> Not equal

Example of use:

HeaterOn := Temperature < SetPoint;

Hand turning knob

The data types for Temperature and SetPoint are both REAL. The
expression can be used if e.g. a heat lamp has to be switched on if the
temperature is too low. Temperature can be measured by a sensor connected
to an analogue input module.

The SetPoint variable contains the temperature at which the heat lamp
should turn on, and the value could come from a hand turning knob with a
potentiometer (see figure).

Explanation:

HeaterOn will be TRUE if Temperature is lower than SetPoint. As the
expression Temperature < SetPoint results in a variable of the data type
BOOL, HeaterOn must be a BOOL data type. The variable HeaterOn can

be connected to a digital output module, which when TRUE, activates a
relay that turns on the connected heat lamp.

Relational operators are mostly used in IF-statements, see chapter 9.1, page
→.

7.3 Numeric Operators (MATH functions)

This chapter describes the built-in math functions in a PLC.

Math functions have typically only one input parameter - a number of data
type INT or REAL. The return parameter from the function is often of the
data type REAL. It is important to ensure that the input parameter is valid.
It is e.g. not possible to call the LN function with the value 0 as this is not
mathematically correct and as a result the PLC Controller will stop the
program execution (Run Time Error).

A correct program execution can be carried out as follows, where x is an
input parameter and y is the result when calling the LN function:

IF x <> 0 THEN
Y = LN(x); //Only calculate if x is not zero

END_IF;

Below table shows a list of built-in math functions in a PLC:

Function Mode of operation (Example where a = 2, b = 5, c = 8)
NEG Change a positive number to a negative number and vice versa.

Same as a:= a * -1;
INC Increases by 1. Add 1 to the value. Increment, INC(a) = 3.

The same as a:= a + 1;
DEC Decreases by 1 down, Decrement. DEC(a) = 1. The same as a:= a - 1;
TRUNC Converting a REAL value to an INT value. The integer value does not get rounded, instead values after the dot are

removed.
TRUNC(3.9) = 3 TRUNC(-2.5) = -2
The function removes the digits after the dot.

FRAC The decimal value of a REAL value. FRAC(2.8) = 0.8, FRAC(-3.49) = 0.49
ABS Absolute value. The function ensures a positive value. ABS (-1.2) = 1.2 ABS (3.4) = 3.4 ABS (-3) = 3
FLOOR For positive values, the return value is less than or equal to the input For negative values, the return value is greater

than or equal to the input.
FLOOR(2.8) = 2 FLOOR(-2.8) = -3

SQR Square. This function calculates x^2, raised to the power of 2. SQR(4) = 16, The same as x * x, (x multiplied by x).
SQRT This function calculates the square root. SQRT (4) = 2, SQRT(9) = 3
LN The natural logarithm. LN(2.71828) ≈ 1 ((the wave sign means approx.).
LOG The natural logarithm with base 10. LOG(10) = 1.
EXP Exponential function. Same as eX or e^x, e = 2.718281828

EXP (1) = 2.718281828
SIN Sinus funvtion. SIN(a) = 0.35 (GRAD) #1).
COS Cosinus funktion. COS (a) = 0.99939 (GRAD) #1).
TAN Tangent function. TAN(a) = 0.03492 (GRAD) #1).
ASIN Arcsin function. Inverse sinus function. SIN-1(x), Sinh(x) #1).
ACOS Arccos function. Invers cosinus function COS-1(x), cosh(x) #1).
ATAN Arctan function. Invers tangent function TAN-1(x), tanh(x) #1).
EXPT Exponentiation of a variable with another variable. ab = EXPT (a,b) = 2^5 = 32

The above usually appears as built-in functions in a PLC; i.e. functions
which can be used without creating extra program library (add-ons) or
program modules. Small variations in the functions can exist between the
different PLC-types. Always look through the programming manual of the
PLC-type to gain an overview and see the possibilities for math functions
and routines.

To use the right data type, remember to check the variable data type for
each individual math function.

#1) To calculate between radians (RAD) and degrees (GRAD) see page →.

7.4 Logic Operators (AND, OR, XOR, NOT)

Logic operators are used to compare two different BOOL variables or
values. The result of the comparison is a value, which always has the data
type Boolean (BOOL) and can therefore only be TRUE or FALSE.

See below for operators and examples:
Operator Description Example

S1:= TRUE, S2:= FALSE
S3:= TRUE

Result

& Same as AND, only TRUE if both values are TRUE K1:= S1 & S2
K2:= S1 & S3

K1 = FALSE
K2 = TRUE

AND AND, result is TRUE if both values are TRUE K1:= S1 AND S3
K2:= S1 AND S2

K1 = TRUE
K2 = FALSE

OR OR.
TRUE if one value is TRUE

K1:= S1 OR S2
K2:= S1 AND S3

K1 = TRUE
K2 = TRUE

XOR The result is TRUE if the values are not equal. K1:= S1 XOR S2
K2:= S1 XOR S3

K1 = TRUE
K2 = FALSE

NOT not, negated
TRUE result if value is FALSE
FALSE result if value is TRUE

K1:= S1 AND NOT S2
K2:= NOT S1
K3:= NOT S2

K1 = TRUE
K2 = FALSE
K3 = TRUE

Logic operators are mostly used with IF-statements as described on page
→.

AND can be used in serial-connected components
(sensors/contacts/switches), where all components must provide an ON
signal to make the entire expression TRUE. OR can be used in parallel-
connected components, where just one component is needed to provide an
ON signal to make the entire expression TRUE.

The logic operators can also be used directly on e.g. binary values as shown
below:

Var1 := 2#10010011 AND 2#10001010; // Var1 er 2#10000010

Var2 := Var1 OR 2#10001010; // Var2 er 2#10001010, DEC138

7.5 Logic, math formulas and use of parentheses ()

It is important to be aware of how math formulas are calculated in a PLC
Controller. If in doubt of how values are calculated – if addition comes

before multiplication – use parentheses.

Following mathematical rules multiplication is carried out before
addition, but experience shows that you cannot be 100 % sure that
the rules of math are respected in a PLC or that the formula is
written correctly in the PLC Code. Therefore, use parentheses to
be sure

If the math formula contains Boolean expressions like AND or OR as
shown below :

X:= B1 OR B2 AND B3;

Then AND is read as ‘multiply’ and is calculated first. OR is read as ‘plus’.

It means: if the value of B2 is FALSE, then the expression B2 AND B3 is
FALSE.

If you are in doubt about the result use parentheses as shown below:

X:= B1 OR (B2 AND B3);

The next example is this formula:

The formula can be written in the PLC code with extra parentheses as
follows:

V1: = (V2/V3) + (SQRT(V4 + V5));

SQRT is the mathematical function in a PLC calculating a square root. The
function only has one input parameter. V4 and V5 are added before calling
the function.

8 Variable assignment

Variables are an important part of programming. In this chapter, the basics
of variable assignment will be covered along with important information
and tips when working. Variables are in some PLC types called tags or
PLC tags.

Definition: A variable points (link) at a box in the memory
containing a place in which a numerical value can be written. The
size of the box depends on the data type which is very important to
remember.

The example below shows how the variable with the name VarA gets a
copy of the number which exists in the variable VarB. That means VarA is
assigned the value held in VarB. Note the use of the signs : = and ; (colon,
equal and semi-colon).

VarA:= VarB;

Subsequently VarB can be given a value of 17.6 as follows:

VarB:= 17.6;

Dot (.) is always used in a PLC when decimal numbers are applied. Both
the variable VarB and VarA has the data type REAL (REAL is used for
decimal numbers).

If the data type for VarB is an INT (integer) it is common that the compiler
(the program in which the PLC code is written) comes up with a warning
message telling the programmer that values may be lost, as the number
assigned to VarB is a decimal number (17.6). This is due to the fact that the

variable VarB can only contain an integer if it is created with the data type
INT (integer).

In ST-programming working with variables and calculations is very simple.

This calculation is written directly in a PLC code:

VarB:= 17.6 * 8 + VarA;

If the value of the variable VarA is 23, then the value of VarB is 163.8 The
variable Count shown below will at each program-scan be increased by 1
(1 is added to the previous value). The program execution has an internal
variable for calculations (called Stack/Accumulator) which makes a copy of
the variable Count, adds 1 to it and returns the new value to Count:

Count:= Count + 1;

If Count is of the data type INT, be aware that when Count reaches the
value 32767, it will change to – 32768 next time the program runs (next
program scan). It is the programmer’s responsibility to make sure that no
overrun happens on a variable. There are two methods to do this: Either a
larger variable is used for Count e.g. DINT. Or the counter is created with
a condition (IF-statement, see chapter 9.1, page →), setting the value to 0
when the number reaches the maximum value.

The last method is the best one as it prevents variable overruns:

Count:= Count + 1;

IF Count > 99 THEN //To avoid overrun
Count:= 0; //Reset counter

END_IF;

As shown above, Count adds 1 with each program-scan. If the PLC scan
time is set to 1 [ms] it will take 100 [ms] before Count is reset to 0.

TIP: The above counter can easily be used as a program Heartbeat,
making it possible to see activity on a running PLC program.

The following are built-in counting functions: CTU, CTD and CTUD. See
page →.

8.1 MATH calculations challenge

Where formulas are involved, math and calculations are easy to work with
in ST-programming. This is one of the biggest advantages compared to the
other PLC programming languages. However, there are several things
which should be taken into consideration when working with math
functions and formulas. These are:

Division by 0 (chapter 8.2, page →)

Calculating with INT and REAL (chapter 8.3, page →)

Decimal errors when using REAL (chapter 8.4, page →)

8.2 Division by zero

It is important for the PLC programmer to remember that a PLC reads data
from different sensors, and some of this data may contain output values of
zero. For example a thermometer (temperature sensor with a transmitter)
measuring temperatures outside can have a 0 degree value output. This is
shown in the calculation below, where VarC is equal to VarA divided by
Temperature:

VarC:= VarA / Temperature;

If Temperature becomes zero, the PLC will produce a run time error
and/or become unstable because it is an invalid mathematical operation in a
PLC.

To ensure that the PLC does not produce a run time error at any time and to
minimize the risk of errors occurring later, the above PLC code can be
changed as follows:

//Ensure temperature is not zero when calculating
IF Temperature <> 0 THEN

VarC:= VarA / Temperature;
END_IF;

The calculation is only carried out if Temperature is not zero (the operator
sign <> means different from / not equal. See chapter 7.2, page →).

Another possibility to ensure that the calculation is not carried out when the
Temperature is zero, is the following solution:

//Ensure temperature is not zero when calculating
IF Temperature = 0 THEN

Temperature:= 0.0001;
END_IF;

VarC:= VarA / Temperature;

NOTE: The math functions LN (x) and LOG (x) cannot tolerate x with a
value of zero.

8.3 Calculating with REAL and INT variables

Calculations can be made with both integers (INT) and decimal values
(REAL). If a division of two integers is to be calculated it must be
considered which data type the variable is using and how the calculation is
carried out.

In the example to the right the three variables are all of the type INT, where
the brown box shows the value inside the variable:

In the example above the result of VarC will be zero because VarC is an
integer. In an ordinary math calculation this example should provide a result
with decimal values (10 divided by 15 does not result in an integer, but the
decimal number 0.67). However, as the division is carried out with values
of the data type INT the result is zero.

To make the calculation succeed, the calculation has to take place in a
REAL variable. The calculation inside a PLC is carried out by using the
data type for the calculation which is the first variable in the
formula/calculation. In this example it is the data type for VarA. The PLC
will disregard the data type of VarC which is in fact a REAL. However,
VarC must be a REAL for the result to be saved (it is not possible to save a
REAL variable in an INT variable).

As VarC is of the REAL data type, the solution to ensure a correct
calculation is to copy VarA to VarC before the calculation is carried out

The internal calculation is then performed in a REAL variable. The code
for this is as shown to the right:

If numbers are written directly (hard coded) into a calculation, the PLC sees
these as integers and the result is not as expected. VarD will become zero:

The solution is that numbers must be written as decimal numbers with a dot
to ensure the calculation is performed correctly as shown:

As calculations in a PLC can be different to what we know from our
calculators, a tip is therefore to check whether the calculation shows the
expected result. A calculator or a math program must be used to make
control calculations.

In some PLC types, a calculation is made inside an accumulator (ACC)
from where values must be copied to and from. The same rules apply.

8.4 Decimal errors when using REAL

When calculations are made using the REAL data type, it sometimes
occurs that a result is not a round number. A variable result might be
expected to be a nice, round number such as e.g. 11, but the calculation
results in the number 10.999999. This is caused by the fact that a computer
can only work with the integer data type. A REAL value is an adjusted
value. This can create problems when comparing numbers in the
programming code. This is shown in the code lines below where the
variable Lamp1 must be set to 1, when the variable Sensor1 becomes 11

IF Sensor1 = 11 THEN
Lamp1:= TRUE;

END_IF;

Because a decimal error might occur which has the consequence that
Sensor1 never becomes exactly 11, there is no guarantee that the above
PLC code will work correctly and set the variable Lamp1 to TRUE.

The above example can be changed to the below PLC code where the
Sensor1 value is now checked inside a range. The range could be between
10.99 and 11.01:

IF (Sensor1 > 10.99) AND (Sensor1 < 11.01) THEN
Lamp1:= TRUE;

END_IF;

Alternatively, use the rounding off functions FLOOR() or TRUNC(). See
page →.

You can also implement a rounding function (here the rounding is set to 1
decimal):

1. Multiply the sensor value by 10

2. Convert value to an INT variable by using the function:
REAL_TO_INT();

3. Convert back to a REAL variable by using the function
INT_TO_REAL();

4. Divide value by 10

Problems with rounding can be experienced in a number of different
contexts. For example, when a motor’s speed gauge is close to but not 0
(zero), or a fuel tank is physically empty but the level sensor shows a small
value close to zero. A flow meter can also show a small value even if the
plant is not in operation. This can, however, be caused by a lack of
calibration (zero position) of the instrument.

8.5 Data communication (transfer of variables)

When designing automation solutions variables often needs to be
transferred to other computers. This chapter highlights issues in relation to
data transfer of variables.

Problems can occur when transferring REAL variables to other PLCs, PCs,
electrical apparatuses or automation instruments. This happens due to
different interpretations of how a REAL or FLOAT value is defined in
different computers (a computer represents works in integers more
precisely). Issues can also arise due to different programming versions, or
that 16, 32, 64, 128-bit systems handle REAL and FLOAT differently. This
problem is solved by always transferring values as integers. Values can then
be multiplied by 100 to obtain values with two decimals and the receiver

must then divide by 100 to obtain the right decimal values with two
decimals.

Due to different ways of handling and interpreting STRINGS, it can be a
challenge to transfer STRINGS between computers. Issues could occur due
to different bit sizes, Unicode or choice of ASCII characters. Lastly, the
length of a STRING starts at position zero in some programming languages
and position 1 in others. Converting STRING to BYTE makes it ‘simple’
to transfer data.

Always start data communication by reading WORD. Remember that
some computers have swapped WORD values (the lowest 8 bits are
replaced with the 8 highest bits). Also remember that if a value begins with
0X, it is a HEX value. In some PLCs, a BOOL uses 16 bits and can
therefore also be an INT.

A STRUCT cannot be transferred directly as this is a structure (a kind of
template). If a PLC is to receive a BOOL variable (alarm signal, counter
value, trigger signal, or start signal), it must often be implemented as a one-
shot in the PLC.

All variables passed between several devices can be advantageously
noted in a protocol description. A kind of I/O list, so there is documentation
for the communication.

8.6 Data type conversion functions

Several built-in functions are available to transfer (converting) the value of
a variable with one data type to a variable with another data type. Some
PLC types supply more than 100 different conversion functions for different
data types.

Naming and syntax for the conversion functions:

TYPE1_TO_TYPE2 (ConvertFrom);
Where

TYPE1 is the data type which is being replaced by the
data type of Type2 (data type of ConvertFrom).

TYPE2 is the converted data type

Most used datatype conversion functions:
Function from to Example Comments
REAL_TO_INT REAL INT Val:=

REAL_TO_INT(1.6);
\\Val = 2
Val:=
REAL_TO_INT(1.3);
\\Val = 1

Rounding to nearest integer (IEC60559)
Val is an INT

INT_TO_REAL INT REAL Val1:=
INT_TO_REAL(4);
\\Val1 = 4.0

Convert an integer to a decimal value.
Val1 is a REAL

INT_TO_BOOL INT BOOL Val2:=
INT_TO_BOOL (1);
\\Val2 = TRUE

1 is converted to TRUE.
0 is converted to FALSE.

INT_TO_TIME INT TIME Val3:=
INT_TO_TIME (5);
\\Val3= T#5ms

Converts an integer value to a variable with the TIME data
type in [ms]
See note #1)

RAD_TO_DEG
DEG_TO_RAD

LREAD LREAD Converts between radians (RAD) and degrees (GRAD).
Used with the SIN and COS functions.

To convert a REAL variable (decimal value) to an INT variable, the
function REAL_TO_INT must be used. See first row in the above table.

It is important to ensure that the value can be converted, because if it can’t
an error can occur causing the PLC to stop the program execution, or make
the entire program unstable.

#1) DATE is converted from an internal electronic circuit which is a part of
the hardware in a PLC. This circuit counts time in seconds from 00:00:00
UTC 1.1.1970 (Coordinated universal time, atomic clock).

Note that the next Y2K will occur in the year 2038.

8.7 Finding binary values of an integer (Masking bit)

Sometimes there is a need to convert an integer value into a binary value to
check whether a specific bit in a variable is TRUE. This is typically needed
when different digitals output (e.g. lamps) is set from an integer value.
This is also called: To mask out the binary digit from an integer.

This can be carried out in a simple way: Use dot and a digit (bit position no.
0) after the variable as shown below:

MyUINT:= 3; //Unsigned INT datatype. The BIN value is 2#0011
MyBOOL2:= MyUNIT.0; //Get bit 0 from MyUNIT variable

MyBOOL2 (BOOL data type) is TRUE because position 0 in MyUINT is
the first bit, which is 1 in a value that is 3.

The above can also be written as follows:

MyUINT4:= MyUINT AND 2#001; //Where MyUINT = 3 = 2#0011
MyBOOL:= UINT_TO_BOOL (MyUINT4); // Convert to a BOOL
//The result is that MyBOOL is TRUE

Where AND can be used to mask out a bit at position no. 0. Each bit in the
two values MyUINT and 2#001 are ‘multiplied binary’, and if the result is
1, the final result will be TRUE. When ‘2#’ is placed before a value, it
means that the value must be used as a binary digit. See also chapter 4.1,
page →.

If the result needs to be a variable with a BOOL data type, the conversion
function UINT_TO_BOOL must be used.

Below is an example where a variable named Var1 (UINT) is used to set
different outputs bits. The variable OutPutBitX will be set to TRUE
conditions is TRUE:

OutPutBit1:= Var1 = 2#00001; //TRUE if Var1 = 1
OutPutBit2:= Var1 = 2#00010; //TRUE if Var1 = 2
OutPutBit3:= Var1 = 2#00011; //TRUE if Var1 = 3

8.8 Valve matrix

This example shows how variables can be used to control a valve matrix. A
valve matrix is used in breweries and dairies, where several tanks must be
emptied into one or more shared pipelines. The example here uses a valve
matrix designed for 5 tanks which can distribute liquid into 3 different
pipelines, as shown in the picture:

An obvious solution is to declare a 2D array with a BOOL datatype, where
each BOOL variable is directly connected to the valve in the matrix:

VAR PipeMatrix
ARRAY [1 ..5, 1 .. 3] OF BOOL;

END_VAR

Here, tank 3’s valve is open and the liquid flows to pipeline 2:

PipeMatrix [3,2]:= TRUE; //Empty tank 3 to pipe 2

However, creating an array of UINTs may provide a better overview as
shown below:

VAR PipeMatrixUINT
ARRAY [1 .. 5] OF UINT;

END_VAR

Opening a valve is done by typing in 1 at Tank 3, as shown (2 # = binary
number):

PipeMatrixUINT[1]:= 2#000; //Tank 1
PipeMatrixUINT[2]:= 2#000; //Tank 2
PipeMatrixUINT[3]:= 2#010; //Tank 3
PipeMatrixUINT[4]:= 2#000; //Tank 4
PipeMatrixUINT[5]:= 2#000; //Tank 5

It is the valve connected to bit 2 in array 3 that opens and the rest of the
valves are closed. The method provides a good overview of all valves.
All bits can be extracted and copied into PipeMatrix in this way (see more
page →).
Note: Only two valves are shown below. There will be 15 lines of code in
total:

PipeMatrix[1,1] := PipeMatrixUINT[1] = 2#001;
PipeMatrix[1,2] := PipeMatrixUINT[1] = 2#010;
//The statement ” PipeMatrixUINT[3] = 2#XXX” is TRUE or FALSE

8.9 Rounding a REAL to 2 decimals (2 digit REAL)

If a REAL value is converted into a STRING and read out on an HMI
(user interface) or written to an ASCII file, the value will often include 7 to
9 digits. That many digits are not very readable and user-friendly. It is,
however, a way for a computer to handle a decimal digit. A LREAL data
type, for example, has 15 digits.

The method below rounds the value in RealNumber to a digit with two
decimals. If three decimals are required the constant DecimalFactor must
be 1000:

VAR CONSTANT
DecimalFactor : REAL := 100; //10 for 1 digits, 100 for 2 digits,
1000 for 3 digits
RealNumberBegin : REAL := 50.7172;

END_VAR
VAR

INTNumber: INT; RealNumber: REAL ;
END_VAR
RealNumber:= RealNumberBegin;
IF DecimalFactor > 0 THEN //Avoid division by zero (0)

RealNumber:= (RealNumber * DecimalFactor) + 0.5; //+ 0.5 to
round up #1)
INTNumber:= REAL_TO_INT(RealNumber); // Convert to
integer #2)
RealNumber:= INT_TO_REAL(INTNumber); // Convert to
decimal #3)
RealNumber:= RealNumber/DecimalFactor; // Add decimal #4)

END_IF;

DecimalFactor is a CONSTANT because is used more than once in the
PLC code.

A calculation example, where 50.7175 is converted to 50.72:

#1) (50,7175 * 100) + 0,5 = 5072,25
#2) REAL_TO_INT (5072,25) = 5072 (integer value)
#3) INT_TO__REAL(5072) = 5072 (decimal value)
#4) 5072/100 = 50,72

IMPORTANT:
Rounding must not be carried out before other calculations as it deletes
information. Only perform rounding when the value is shown to the
user:

9 Basic ST programming

The following chapters describe the main declarations and concepts in ST.
This includes the basic ST programming syntax followed by a number of
code examples. Syntax means the set of rules, principles and structure of
programming.

In the shown syntax descriptions, the <Condition> and <Statement>
sections will be replaced by variables, logic, expressions and PLC code.

9.1 IF-THEN-ELSE statement

An IF-THEN-ELSE statement is the most used expression in the ST
programming.

The IF statement can e.g. be used to read a digital signal from a sensor input
module and then perform an action. The sensor input can be an electrical start
switch, an ON/OFF switch or a level switch in a pump well. If the sensor is
activated, an action must be performed: e.g. starting a pump or turning on a
light.

The IF statement can also be used for analogue input signals and for internal
variables.

The syntax of the IF statement is:

IF <Condition> THEN
<Statement>

END_IF;

Where:

IF-THEN flowchart

<Statement> = Can contain one or more lines of PLC code.

<Condition> = An expression is always either TRUE or FALSE.
If the expression is fulfilled, the code in <Statement> is
carried out.

The syntax always ends with END_IF and semicolon. However, semicolon is
optional in some PLC types.

The <Condition> line can e.g. be an input signal from an electrical switch or
a sensor and the <Statement> line can be an output signal to turn a lamp on
or off.

The ELSE statement can be added to the expression:

IF <Condition> THEN
<Statement>

ELSE
<Statement1>

END_IF;

Flowchart of the IF-ELSE statement

The ELSE statement is optional, and notice that the lines including
<Statement> are indented (2 x space) to make the whole expression more
readable.

The mode of operation is as follows:
If <condition> is fulfilled (TRUE), the PLC
code in <Statement> will be carried out.
If <condition> is not fulfilled (FALSE), the
PLC code in <Statement1> is carried out.

The above syntax can be changed, so ELSE is not used:

<Statement1>

IF <Condition> THEN
<Statement>

END_IF;

Flowchart without ELSE statement

The mode of operation:

The code in the <Statement1> section will be executed first, which can be
assignment of values to variables.
If <Condition> is fulfilled (TRUE), the code in the <Statement> section is
executed and can be used to overwrite the assigned variables in the
<Statement1> section.

As seen in this example, it is not necessary to use the ELSE statement in an
IF statement. Not using ELSE can make the code more readable.

NOTICE: If the <Condition> section contains colon “:=” the program will
check to see whether the variable has been assigned successfully. However,
this is not normally the intention!

Therefore, remember that the equal sign “=” must stand alone as shown
below:

When using ELSE statements you can easily end up writing more complex
code as shown below:

IF <Condition1> THEN
<Statement1 >

IF <Condition2> THEN
<Statement2>

ELSE
<Statement3>

END_IF;
ELSE

<Statement4>
END_IF;

The mode of operation is as follows:

The PLC code in <Statement1> is executed, if <Condition1> is fulfilled
(TRUE). After <Statement1> has been carried out, <Condition2> is
controlled and if it is TRUE, <Statement2> is carried out; otherwise
<Statement3> is carried out. If <Condition1> is FALSE, then
<Statement4> is carried out instead.

Be careful of this, otherwise your code will soon become too complex with
many ELSE statements!

IMPORTANT
If there are many (more than 3) IF-THEN-ELSE statements, the PLC code
can be difficult to read. A CASE statement (chapter 9.2, page →) can easily
replace complex IF statements to increase the readability of the code.

It also minimizes the possibility of making errors in complex IF-THEN-
ELSE statements, when other people correct or add something in the PLC

code.

Furthermore, the amount of lines in the PLC code is reduced, when many
identical IF statements are replaced with a CASE. A reduction of more than
50 % in the number of PLC code lines is not unusual, when CASE is used.
See chapter 9.2.3, page →.

An ELSIF statement can be added to check several conditions:

IF <Condition1> THEN
<Statement1>

ELSIF <Condition2> THEN
<Statement2>
ELSE
<Statement3>

END_IF;

Flowchart with ELSIF statement

The mode of operation is as follows:

The PLC code in <Statement1> will be carried out, if <Condition1> is
TRUE. If <Condition1> is FALSE <Condition2> is checked, and if it is
TRUE the PLC code in <Statement2> will be carried out. If <Condition1>
and < Condition2> are FALSE, the PLC code in <Statement3> will be
carried out.

It is recommended to use CASE instead of ELSIF, because CASE creates
readable code and flowcharts for CASE and ELSIF can be the same (see
page →).

9.1.1 EXAMPLE: Motor control with self holding relay

This example shows a motor controlled by a self holding relay (also called
latching or keep relay). There is a start switch button with the variable name
S1 which has the data type BOOL, and is a Normally Open (NO) contact. In
addition, there is a stop switch S2 with the data type BOOL, and this is a
Normally Closed (NC) contact.

The two manual switches S1 and S2 are both supplied with 24V and
connected to digital inputs on the PLC, as shown on the diagram below:

There are two digital outputs from the PLC, one connected to a control lamp
L1, and the other connected to the motor K1. Both K1 and L1 have the data
type BOOL because they are digital outputs.

The output K1 is connected to a digital input board inside the motor. The
motor is configured to run when 24V (TRUE) is received on the digital
input. This configuration is set by the motor control software tool. The motor
stops when 0V (FALSE) is received from the input. The motor is supplied
with 230V via a separate power supply cable. The L1 lamp is on when the
engine is running.

How the program code works:

When the S1 switch is activated (button pressed), K1 is set to TRUE and the
motor starts. K1 remains TRUE, even though S1 is no longer activated. If S2
is activated, K1 will be set to FALSE and the engine will stop. NOT (means
inverted signal) and is written in front of S2 in the code, because the S2
signal is physically shorted in the electrical contact switch, and is therefore
normally TRUE on the digital input card.

The behavior of the code can be illustrated with a flowchart as shown to the
right:

A PLC program executes all the program code in one program scan, after
which the variables are set on the output card. This means that if both S1 and
S2 are activated at the same time, the last value assigned to K1 and L1 will
be used and set on the output card. Therefore, it is important that the program
code for the S2 stop switch is placed last in the program code.

Program code without IF statement

The program code can be written without using IF statements, as shown in
the following:

Example #1 shows how to copy the value of K1 to L1. This means that L1 is
dependent on the output signal of K1, which is not good program structure.

In example #2, there are two almost identical program code lines. This can
cause the programmer to forget to change both lines when any further
changes are needed.

//#1
K1:= (K1 OR S1) AND S2;
L1:= K1;

//#2
K1:= (K1 OR S1) AND S2;
L1:= (L1 OR S1) AND S2;

The above examples show that only few code lines are needed, but challenges
can arise from further changes and extensions to the program.

To obtain a better program structure, an additional variable can be created as
shown in example #3. Here, an additional temporary variable T1 is created,
and is used to set (assign) the variables K1 and L1.

//#3
T1:= (T1 OR S1) AND S2;
K1:= T1;
L1:= T1;

Start and stop switch in the same IF statement

Since the program code that stops the motor is placed after the program code
that starts the engine, it is not relevant to add S2 to the IF statement, as
shown here on the right. Adding IF statements would also make the code
more complex.

//Start switch activated
IF S1 AND S2 THEN

K1:= TRUE;
L1:= TRUE;

END_IF;

9.1.2 EXAMPLE: Manually operated tank control

This example shows a manually operated tank control (1) with an inlet valve
(2), an outlet valve (5), a motor stirrer (6), and two level sensors (3) & (4).

A manually operated switch S1 is used to open the inlet valve. When the inlet
value is open, liquid fills the tank. The manually operated switch S2 is used
to empty the tank.

Stirring (mixing) can be switched on manually by using switch S3.

All variables are digital signals, and therefore declared with the data type
BOOL.

The diagram delow shows components and associated PLC code:

The program code has the following built-in safety measures to avoid tank
overflow: The inlet valve (2) is connected to the variable V1, and the inlet
valve cannot be opened when LS1 is activated. LS1, located at the top of
tank, is activated by high liquid levels. LS1 is a Normally Closed (NC)
switch, and therefore the signal is FALSE if the sensor cable is disconnected,
broken or when the liquid level inside the tank is high.

The variable LS2 is connected to a sensor (4) and if activated, M1 will not be
activated. This ensures the motor stirrer does not run if there is no or very
low liquid levels inside the tank, also known as a dry run. If there is no liquid
in the tank the motor stirrer may get hot and malfunction. LS2 is conneced to
a Normally Open (NO) switch and will therefore become TRUE when liquid
reaches the sensor (4).

9.1.3 EXAMPLE: IF-THEN-ELSE open and close valve

The following PLC code example checks the alarm from a pump and the
pressure in relation to a set-point:

If the whole condition, marked by white frame in the IF statement, is fulfilled
(TRUE), the valve ValveOpen is opened, otherwise the valve is closed.
PumpAlarm can be a digital input signal with the data type BOOL.
PumpPressure is a variable with the data type REAL, and can be an analog
input that receives a signal from a pressure sensor.
PumpSetpoint (the desired pressure setting that the pump should control) is
a REAL data type, and can be a value that the user can adjust via a user
control panel (HMI).

The above PLC code example can be rewritten to:

ValveOpen := FALSE; //#1 Note

IF (PumpAlarm = TRUE) AND (PumpPressure > PumpSetPoint)
THEN

ValveOpen := TRUE; //#2 Note
END_IF;

This means a code line less and is simpler to read for some programmers.

NOTICE:
Values are only moved to the output modules, when all PLC code has been
executed (a program scan), therefore the connected valve ValveOpen will not
close straight away (see #1) and open (see #2) right after.

To make the PLC code simpler, it can be rewritten as follows:

ValveOpen := PumpAlarm AND (PumpPressure > PumpSetPoint);

The variable ValveOpen is set to TRUE or FALSE, without using an IF
statement!

9.1.4 EXAMPLE: Robot control for packing items

This example is of a small robotic plant where a robot packs three items in a
box. Afterwards, the box is checked by a vision camera:

The robot has its own control system (robot controller) which is controlled
from the PLC by two digital signals (K6, K7). When the robot has finished
moving the items to the box, the PLC receives a confirmation signal (B8)
from the robot controller. Finally, the box is checked by a vision camera. The
conveyor belts are controlled by the PLC.

Components and mode of operation:

Name I/O Component Mode of operation
S1 DI Start switch When activated, the plant starts: Conveyor belts are running and the robot is moving items.
S2 DI Stop switch (NC – Normally Closed contact). Stops plant running.
B1 DI Sensor Signals when an item can be removed by robot.
B3,
B4,
B5

DI Sensor Signals when a box breaks the sensor light beam.
B3 starts robot program. B5 launches vision camera. B4 activates K3.

B6 DI Vision Signals if the camera confirms that the box is ok.
B8 DI Robot Signals when Robot has moved three items.
K3 DO Air

Cylinder
On signal: The cylinder has moved up and the box is stationary, so the robot can place items in the box.
Controlled by B4 and B8

K5 DO Vision
camera

On signal: Take a picture of the box and compare with previous pictures of boxes which are ok.

K6 DO Robot Robot start signal. A new box is ready to be filled. Robot stops when no signal is received.
K7 DO Robot Moves an item to the box.
L1 DO Green light Latest box meets requirements. (Box ok)
L3 DO Red light Latest box does not meet requirements (Box not ok)
M1,
M2

DO Conveyor
belt

Powered by a motor with a frequency converter.
Speed is set directly on the frequency converter.

All variables are digital signales with the data type BOOL.

Below find program code and flowcharts:

//
//Program code for box filling by Robot
//
//Note: All variables are BOOL data types

//Start button pressed
IF S1 THEN

M1:= TRUE; //Start Conveyor belt 1
M2:= TRUE; //Start Conveyor belt 2
K3:= TRUE; //Cylinder up, box filling stopped

END_IF;

//Start button pressed (NC contact)
IF NOT S2 THEN

M1:= FALSE; //Stop Conveyor belt 1
M2:= FALSE; //Stop Conveyor belt 2
K6:= FALSE; //Stop robot program

END_IF;

//Start box filling program (refer to flowchart)

IF B3 THEN
K6:= TRUE; //Run robot program

//Robot is running moving items to box
K7:= B1 AND K6;

// Robot program done
IF B8 THEN

K6:= FALSE; //Stop robot program
K3:= FALSE; //Cylinder down. Let the box pass

END_IF;

// Cylinder up. Ready for next box
IF B4 THEN

K3:= TRUE;
K5:= FALSE; //Ready for next vision check

END_IF;
END_IF; //End box filling

//Check box by camera (refer to flowchart)
//Light is on until next check
IF B5 THEN

K5:= TRUE; //Box activates camera to take picture
L1:= B6; //Green light
L3:= NOT B6; //Red light

END_IF;

9.2 CASE statement

CASE is a statement used when different events or actions are to be carried
out based on only one variable. Use CASE when IF statements become too
complex.

CASE is good for sequence control (also called a sequencer or finite-state
machine (FSM)) and is often applied (used), when e.g. a machine can be set
in different operational modes (e.g. STOP, STARTING, RUN, STOPPING)

or applied in a process in a dairy (e.g. NONE, CREAM, SKIM_MILK,
WHOLE_MILK, WATER_FLUSH).

A CASE statement has the following syntax:

CASE <Condition> OF
<Condition1> : <Statement1>;
<Condition2> : <Statement2>;
<Condition3> : <Statement3>;
. . .

ELSE
<Statement>

END_CASE;

Mode of operation:

The variable to be checked is the <Condition> and this must be an integer
data type (INT, DINT, WORD).

The different values <Condition> can take, are written in the sections
<Condition1>, <Condition2> and <Condition3> followed by colon “:”

The action to be executed is written in <StatementX>, here X is 1, 2 or 3
which can be PLC code. If the PLC code is longer than 4 to 6 lines, a
function or a program module should be created with readable program code.

If <Condition> = <Condition2> the code in <Statement2> will be
executed.

It is not required to have PLC code in <StatementX>. The sections can be
empty.

The three dots (…) indicate that the number of sections is unlimited, but must
be at least one <Condition3> : <Statement3> line in each CASE statement.

The ELSE section is optional. It is, however, recommend that some PLC
code is written in this section, like e.g. an alarm/error message, so that the
programmer is aware that a program call is performed in the ELSE section.

9.2.1 EXAMPLE: CASE – Setting the motor speed

Here is an example of how to use a CASE statement, where the speed of a
motor is adjusted on a selector switch named MotorSwitch. The switch can
be activated in steps from 1 to 6, which can be 6 voltage levels.
MotorSwitch is an INT data type.

MotorFan:= FALSE; //Turn off the motor cooling

CASE MotorSwitch OF

1, 2 : MotorSpeed := 25; //Two values, separated by comma
3 : MotorSpeed := 35; //One value in CASE
4..6 : MotorSpeed := 50; //Interval CASE: start no. .. end no

MotorFan:= TRUE; //Turn on the motor cooling

ELSE
MotorSpeed := FALSE; //Use as default

END_CASE;

Selector switch/ Rotary switch

Explanation of example:

If MotorSwitch is 1 or 2, the MotorSpeed will be 25. If MotorSwitch is 3,
the Motor Speed will be 35. If MotorSwitch is 4, 5 or 6, the MotorSpeed
will be 50.

If no CASE condition is fulfilled, i.e. MotorSwitch is not 1 to 6, the
MotorSpeed will be set to zero (the motor is not running).

The MotorFan variable is always set to FALSE (ventilation turned off)
before the CASE code begins. Only when MotorSwitch is 4 to 6 the
MotorFan is set to TRUE, where the cooling has to run. When MotorFan is
set to FALSE before the CASE code, it eliminates the need to write
MotorFan:= FALSE in all other CASE sections.

The ELSE statement ensures that MotorSpeed will be zero, if MotorSwitch
has a value which the CASE does not recognize, - this ensures better quality
PLC code and provides instructions in the event of unknown values of
MotorSwitch.

Because there is a risk that the PLC programmer ‘forgets’ to change all the
values in the PLC code, if values need changing, it is recommended to
replace the values 1, 2, 3, 4 and 6 with variables created as CONSTANT, as
the values is used more than once in the same PLC code. Read more about
CONSTANT in chapter 6.2 page →.

9.2.2 EXAMPLE: CASE – For executing programs

In this chapter CASE is used to execute different program modules. See more
about splitting code into program modules in chapter 10, page →.

The example is shown without and with the use of CONSTANT.

The value of ProgramSelect determines which program module will be
executed:

Mode of operation:

If ProgramSelect is 10, then the program module ProgramStartUp is
executed. Inside the ProgramStartUp, the variable ProgramSelect is
changed to 20, so that ProgramRun is executed in the next program-scan
instead of ProgramStartUp.

If the condition variable ProgramSelect is set to a value not implemented in
the CASE statement, the variable ErrorSelectingProgram is set to 1, to
inform the programmer that a program module has not been selected.

The fixed values ProgramSelect can take, are: 10, 20 or 90. A jump between
the values (11, 12, 13 .. to 19) is intentionally created to give space for future
extensions. The values can be created as CONSTANT or ENUM so the
values are easy to find in the PLC code, and can be changed in one place
only.

IMPORTANT A good software structure uses CASE statements to execute
different program modules. CASE statements gives a better
overview than many IF-statements, especially ELSE-IF
statements.

9.2.3 EXAMPLE: CASE – Recognizing numbers

The example below shows how the CASE statement can be used to recognize
numbers. The numbers could be a password, which is used to give a user
access to the user control panel (HMI). There are often various levels of
access such as:

Operator password
Administrator password
SuperUser password

In the following example a variable PassOK is used to check whether
PassSelect contains a valid password or not.
In the first program line, the variable PassOk (BOOL) is set to FALSE.
If the variable PassSelect contains one of the values 1747, 3309, 5607, 1234
or 1027 the variable PassOK is set to TRUE as shown below:

PassOk := FALSE; //No valid password number

CASE PassSelect OF
1747, 3309, 5607, 1234, 1027: PassOk := TRUE //Valid password
number

END_CASE;

The example shows that CASE is a simpler solution than applying many IF
statements, because the above solution will require five IF statements (15
lines of PLC codes) or a very long IF statement, as shown in the example
below:

PassOK := FALSE; //Default, if not found in the IF line below

IF PassSelect = 1747 OR PassSelect = 3309 OR PassSelect = 5607 OR

PassSelect = 1234 OR PassSelect = 1027 THEN
PassOK := TRUE; // Valid password number

END_IF;

As can be seen above, long lines of code can be written, but this will make
the PLC code difficult to read. It is recommended that the PLC code lines are
no longer than the screen width of the PLC compiler programming tool.

9.3 Iteration statement, LOOPS

Loops are used to repeat PLC code a number of times. Loops are often used
when all values in an ARRAY must be set to a specific value, or a maximum
or minimum value must be found in an ARRAY.

It is important to ensure that DEAD LOCK does not occur in the PLC. This is
a situation where the CPU uses all its power to work on the loop, and is a
common programming error. To ensure that the loop ends, it must end after a
specified amount of time or a specified number of executions.

The next chapter shows different methods of implementing loops.

9.4 FOR-DO Statement

This type of loop is the most frequently used type. A FOR-DO is always
executed a certain number of times. This is determined by a start value and an
end value.

Syntax is as shown below:

FOR <ValueStart> TO <ValueEnd> DO
<Statement>

END_FOR;

Where:

<ValueStart>
=

A counter variable (INT or WORD) set to a start value.

<ValueEnd>
=

Execute the <Statement> programming code until the
counter variable reaches this value

<Statement>
=

Containing the PLC code to be executed. It can be one or
more PLC code lines.
It is recommended that lines between FOR and END_FOR
is indented with 2 X SPACE. This makes the code more
readable.

NOTICE It is not allowed to change the counter variable in the
<Statement> section – it interrupts the program execution!

A FOR-DO statement always adds 1 to the count value per execution. If there
is a need to add more than 1, BY is added. This is, however, not used very
often.

If the loop needs to step backwards (ValueStart > ValueEnd) use BY -1

Syntax for using BY:

FOR <ValueStart> TO <ValueEnd> BY <ValueStep> DO
<Statement>

END_FOR;

Where:
<ValueStep>
=

OPTION. The step value if different from 1 If the loop needs
to step backwards use BY -1

NOTICE: The smaller PLC types with less calculation capacity, cannot
handle large FOR-DO statements because this can create long scan-times.
When using the small PLC types, it is recommended to reduce the FOR-DO
statements, or to split up the FOR-DO statements into smaller FOR-DO
statements, and place these in different program modules and execute them
with different scan-times.

IMPORTANT
A typical error when working with FOR-DO statements and ARRAY is that
the first or last position in the ARRAY are not handled. Another typical error
is when the loop runs longer than the size of the ARRAY, which can result in
unstable PLC code.

Variable names such as i, j, n or m are often used as counter variables.

If there is a need of exiting the FOR-DO statement before all loops are
carried out, the EXIT command can be used. This is used if the task is to find
a value inside the ARRAY and when the value is found, the program can exit
the loop.

Syntax for using the EXIT command:

FOR <ValueStart> TO <ValueEnd> DO
<Statement>

IF <Condition> THEN //#1, Exit now?
EXIT; //Exit the loop

END_IF;
END_FOR;

As shown above, IF must be added (#1) within the FOR-DO statement and if
the <Condition> is TRUE, the EXIT will be carried out and the loop
immediately ends.

9.4.1 EXAMPLE: FOR – A loop running 4 times

In this chapter the example shows an ARRAY with 4 elements of the data
type INT. Each of the elements is set to 7 by using a FOR-loop:

VAR
n : INT; //Counter
BufArray : ARRAY [1 .. 4] OF INT;

END_VAR
FOR n:= 1 TO 4 DO //Repeat 4 times

BufArray[n]:= 7; //Insert value

END_FOR;

BufArray

With values:

Number 1 and 4 occur twice in the example, when ARRAY is created and in
the FOR-loop. These numbers must, therefore, be created as a CONSTANT,
as a typical error is the programmer forgetting to change the value in both
places in the code.

The counter variable n, used by the FOR-loop, counts (adds) 1 each time the
loop executes. In each execution, the value 7 is inserted on the position in
BufArray, in the relevant variable n.

The example above can be rewritten to the following four lines of code:

VAR
BufArray : ARRAY [1 .. 4] OF INT;

END_VAR
BufArray[1] := 7;
BufArray[2] := 7;
BufArray[3] := 7;
BufArray[4] := 7;

The FOR-loop replaces four lines of the PLC code!

Single values can be inserted directly into BufArray as follows:

BufArray[2] := 23;
BufArray[3] := 12;

9.4.2 EXAMPLE: FOR – LOOP and 3D ARRAY

The example in this chapter shows how all elements in a 3-dimensional
ARRAY named Array3D are set to 1. This method can be used right after
the program starts, or if all positions in an ARRAY must be assigned (set to)
a certain value. In the variable section three variables are created (declared):
x, y and z, which are used to index the ARRAY.

To define the size of the Array3D, three CONSTANT variables are created:
X_MAX, Y_MAX and Z_MAX, so it is easy and safe to change the size of
the ARRAY later. ARRAY might have another size during test and the
implementing of the PLC code, and by using CONSTANT all positions are
changed.

PROGRAM MAIN
VAR CONSTANT

X_MAX : INT := 10;
Y_MAX : INT := 20;
Z_MAX : INT := 30;

END_VAR
VAR

x, y, z : INT; //Index to the 3D Array
Array3D : ARRAY [1 .. X_MAX, 1 .. Y_MAX, 1 .. Z_MAX] OF INT
;

END_VAR
FOR x:= 1 TO X_MAX DO

FOR y:= 1 TO Y_MAX DO
FOR z:= 1 TO Z_MAX DO

Array3D[x, y, z] := 1; //Set current position to 1
END_FOR;

END_FOR;
END_FOR;

A 3D ARRAY can e.g. be used for: placing packages on a pallet in a
production line, a large warehouse, a logistics terminal or a big parking
garage.

In the above example, 10 x 20 x 30 = 6000 elements with INT variables are
created. It can result in execution problems in smaller PLC types, when a
loop with 6000 elements are executed. If this occurs, a number of 2D

ARRAY can be created instead, as a 3D ARRAY can always be rewritten to
a number of 2D ARRAY.

9.4.3 EXAMPLE: Calculation of the average value

The following example shows how a FOR-DO loop can be used to calculate
an average value of a range of values saved inside an ARRAY. It is assumed
that the averaged values are already saved in BufArray:

PROGRAM Average
VAR CONSTANT

BufArrayMin : INT := 0;
BufArrayMax :INT := 9; //Must be higher than BufArrayMin

END_VAR
VAR

i : INT; //Counter variable in FOR LOOP
BufArray : ARRAY [BufArrayMin .. BufArrayMax] OF

REAL;
BufArraySum : REAL; //Calculator for the value sum
BufArrayAverage : REAL; //Average value of the BufArray

END_VAR
BufArraySum := 0; //Reset calculator #1)

//Sum all values from the buffer into BufTempVar #2)
FOR i := BufArrayMin TO BufArrayMax DO

BufArraySum := BufArraySum + BufArray[i];
END_FOR;

//Calculate average
BufArrayAverage := BufArraySum /(BufArrayMax – BufArrayMin +
1);

Overview of ARRAY with 10 positions (elements):

Explanation to the Average example program:

Constants (VAR CONSTANT)
Two constants, BufArrayMin and BufArrayMax, are created (declared),
because the constants are used three times in the PLC code, and when
changing the length of the BufArray the constants ensure all values are
changed.

Naming
The first part of constants and array shares the same name, BufArray, which
indicates that they belong together.

Mode of operation:

BufArraySum is a variable to contain the sum of the all values.

First, the variable BufArraySum is initialized to the value zero (0) to ensure
that the content is zero the first time it runs. #1)

The next step adds up all values in the BufArray by using a FOR-DO loop.
BufArrayMin is at the first position (the start of BufArray) and ends with
BufArrayMax (the end of BufArray). Notice that the number of times the
FOR-DO loop executes is BufArrayMax – BufArrayMin + 1 as the first
and the last execution in the loop are both included. #2)

When the loop is finished the variable BufArraySum now contains all
values, added together. To find the average value, the total amount is divided
by the number of the times the FOR-DO loop has executed. The result can be
found in the BufArrayAverage variable.

It is important to make sure that the result of the calculation BufArrayMax –
BufArrayMin + 1 time is not zero, because a PLC cannot handle a division
by zero.

The calculation of the average value in a PLC is often used to filter input
signals from analogue sensors. When filtering signals, ‘noise’ might be
removed from the recorded values. The disadvantage of a FOR-DO loop for
this purpose is that array requires a lot of memory, takes up CPU time and the
calculation of an average is based on all values in the array. Therefore, it can
be advantageous to use a digital filter. See more in chapter 13.4, page →.

9.4.4 EXAMPLE: Find the lowest value in an array of numbers

This example uses a FOR loop to find the minimum value in an array of
numbers.

The task is to find the lowest number in the row shown to the right. Here the
lowestminimum number is 12 which can be found in position 3:

To find the minimum value (lowest number): Select the first value in the row.
This value is 15 (where the variable i is 0). Now the FOR loop will compare
this value to the next in the row. If the next value is lower, the value is saved
and used as the new minimum value. An IF statement is used to check if the
value in the row is lower than the saved one. The FOR loop continues (loops
through) until all the numbers in the row have been compared.

LOOP Tabel
I MinValue
0 15
1 15
2 15
3 12
4 12
5 12
6 12

Below find the program code and flow chart:

PROGRAM FindMin
VAR

Ar: ARRAY[0 .. 6] OF INT := [15, 29, 56, 12, 51, 21, 44];
MinValue: INT; //The minimum value found
i: INT; //Counter for the LOOP
MinIndex: INT := -1; //Index where min. value was found

END_VAR
//Save the first value to have a value to compare to
MinValue:= Ar[0];

//For all values in the ARRAY. Note: Start from index 1,
// (position 1) because the first value was set as the start value

FOR i:= 1 TO 6 DO
//Is the next value in the row lower than the saved value?
IF Ar[i] < MinValue THEN

MinValue:= Ar[i]; //Save value
MinIndex:= i; //Save index

END_IF;
END_FOR;

The minimum value in the array is 12, and is saved in the MinValue variable.
It was found in position (index number) 3, which is saved in the variable
MinIndex.

9.4.5 EXAMPLE: Sorting numbers inside an ARRAY

The following section covers an example of how to sort numbers in an
ARRAY. Sorting is carried out by copying the numbers to a new ARRAY,
organised from lowest to highest number

This example uses the program code from the previous page where the lowest
value was found in an ARRAY. The program code is now executed 7 times
because there are 7 numbers in the ARRAY. When the lowest number is
found, the number 999 replaces the number in its position to make sure the
number does not appear in the search again.

PROGRAM Sorting
VAR //Values to be sorted

Ar: ARRAY[0 .. 6] OF INT := [15,29,56,12,51,21,44];
ArSort: ARRAY[0 .. 6] OF INT := [7(999)] ; //Init all to 999
i, n: INT; //Counter for the LOOPs
MinIndex: INT := -1; //Index where the min values was

found
END_VAR
FOR n:= 0 TO 6 DO //For all values in the ARRAY

MinValue:= ArSort[n]; //Find to find a value below this

//For all values in the ARRAY. Find the lowest value
FOR i:= 0 TO 6 DO

//Is the value found below the saved value?
IF Ar[i] < MinValue THEN

MinValue:= Ar[i]; //Save found value
MinIndex:= i; //Save index where value found

END_IF;
END_FOR; //LOOP i

//Copy the lowest value found into the sorted ARRAY
ArSort[n]:= MinValue;
Ar[MinIndex]:= 999; //Overwrite value, so not appear again

END_FOR; //LOOP n

There are many methods of sorting numbers and the example shown here is
just one of them. The disadvantage of this example is that the original values
are overwritten by the value 999. To mitigate this you can retain the original
values, by copying them to another ARRAY before sorting.

IMPORTANT: The ARRAY size, which is 6, must be declared as a
CONSTANT.

10 Splitting up the PLC program

A PLC program must be split up into many small program pieces in order
to have a good and clear program structure. The small program pieces are
called program modules, functions and function blocks, and they each
contain a small piece of PLC code and is a building block, to be used or
reused whenever needed.

To obtain a good structure, it is a good rule of thumb to only have only 20 -
25 lines of PLC code in each program module, function or function block.

When the PLC program is split up into pieces, the execution order can
easily be changed, and program modules and functions can easily be made
inactive during fault-finding (debugging) (done by putting the // characters
before the name). Furthermore, it is much easier to work with many small
pieces of PLC code, rather than one large giant program, and it is easier to
move and fix small pieces of code.

The program modules and functions must be given unique and indicative
names.

The difference between functions and program modules is that functions
often perform calculations or data processing on individual components,
whilst program modules is the splitting up of the entire program. The
program modules use relevant functions and function blocks to solve the
specific tasks.

It is typically easier to reuse functions and function blocks than program
modules.

10.1 Programmodules

Below diagram shows a main program calling three program modules:

The main program Main is executed once in each program-scan. In Main,
the program module HandlingInput is listed first and therefore the code
inside this program module is executed first. Then the code inside the
CalculateData program module is executed. Finally, the HandlingOutput
program module is executed.

When one program-scan ends, it will be repeated again - the Main
program is called again. If the program-scan time is 50 [ms], the Main
program is executed every 50 [ms]. It is important that the total time of
execution for all four program modules is less than 50 [ms]. If the program
modules contain large arrays or many calculations, all program modules
might not be executed within the scan-time. To solve this issue, the
program-scan time has to be increased or the programs checked to see
whether code can be reduced or redesigned. Remember that the length of
program scan-time can vary depending on the number of IF-statements or
CASE-statements in the code. Therefore, the longest possible scan-time
must be accounted for in the code, and add some extra time just in case.

Normally the PLC will inform the programmer if the scan time needs to be
increased.

The program modules can be configured to have different scan times. This
is useful because not all program modules take the same length of time to
execute:

By splitting the program into program modules, these advantages are
achieved:

Better and clear program structure

Possibility to configure individual scan time

Easy to change program execution order

Program modules can be set to inactive when troubleshooting

There are many ways of splitting code into program modules. Below find
inspiration:

Sensors mounted on one side of the machine

Digital input from electrical switches and circuit breakers

All motors used for ventilation

Value preparation to/from the HMI (user control panel)

Alarm surveillance / alarm supervision

Data communication to other PLCs

10.2 Functions

Functions are important building blocks in a PLC program. A function
contains a limited number of code lines to be used (‘called’ and executed)
again and again.

Functions are also called: procedures, sub-routines or add-ons.

A function’s ‘call’ to MyFunction is carried out as follows:

MyFunction ();

The above function ‘call’ does not take parameters, as the brackets are
empty. Functions can take one or more input values (parameters), on which
the function will work on or use to perform calculations.

When the function ‘call’ has ended, one or more values (parameters) is
returned by the function. The returned value can then be used by the rest of
the program.

Below shown a function ‘call’ which takes two parameters (input values),
12 and 3:

MyFunction1 (12, 3);

Calculations can also be made before a function ‘call’. In the below
example two numbers (3+7) are added up just before the function is
‘called’:

MyFunction2 (3 + 7);

The calculation is carried out before the function ‘call’ and the input value
that enters the function is therefore 10.

If the function is to return values when the function has ended (a result of
one or more calculations), this can only be carried out by using variables, as
the function has a ‘shelf’ in the memory to deliver the value to. When a
function is ‘called’ with an input variable, the function will collect the value
from the variable ‘shelf’ in the memory and deliver a copy of the variable
to the function.

The advantage of using functions is that the PLC code can be reused. PLC
code reuse reduces the size of the program, creates fewer syntax faults and
is easier to work with for other programmers.

Below is shown a program ‘call’ to a function with variables:

MyFunctionInOut (Var1:= ValueIn, Var2=>ValueOut, Var3:=
ValueInOut);

The three variables Var1, Var2, Var3 are created (declared) inside the
function with the following variable scope:

Variabel Scope Assignment
Var1 IN :=
Var2 OUT =>
Var3 IN_OUT :=

Block diagram of the function:

ValueIn is a value going into the function and is written as follows:

Var1:= ValueIn;

The value which is going out of the function must be delivered in the
variable ValueOut as follows:

Var2=>ValueOut;

The variable which is both going in and out of the function delivers the
address pointing (a link) to the ‘shelf’ in the memory and is written as
follows:

Var3:= ValueInOut;

Notice how the assignment signs “=>” and “:=” are used at function ‘calls’.

How to make a function ‘call’ an ARRAY:
A program call to index no. 4 in an ARRAY in a function is carried out as
follows:

MyFunction [4] (ValueIn);

10.3 Function (FC) and Function Block (FB)

There are two function types in a PLC:

Function (FC)
Function block (FB)

Function (FC) PLC code excludes static data, which means that all local
variables lose their value when the function ends. The variables are
initialized again the next time the function is ‘called’. The function
typically carries out a mathematical calculation and returns the calculated
value.

Function block (FB) PLC code which includes static data. The local
variables retain their values between each ‘call’ to the function. An example
could be a function used as an hour counter (number of operation hours,
also called TACHO HOURS) on a motor which requires that the local
variables retain their values once the function has ended. The function
could also count the number of motor starts per hour or time until the next
motor service.

Syntax of a function (FC):

FUNCTION <Name> : <RetDataType>
VAR_INPUT

<Variables>
END_VAR

VAR_OUTPUT
<Variables>

END_VAR
VAR_IN_OUT

<Variables>
END_VAR
VAR

<Variables> //Local variables
END_VAR

<Implementation> //Write code here
<Name> := 123; //Set return value

END_FUNCTION

Syntax of a function block (FB):

FUNCTION_BLOCK <Name>
VAR_INPUT

<Variables>
END_VAR
VAR_OUTPUT

<Variables>
END_VAR
VAR_IN_OUT

<Variables>
END_VAR
VAR

<Variables> //Local variables
END_VAR
<Implementation> //Write Code here

END_FUNCTION

The implementation of a function starts with the keyword: FUNCTION
and a function block starts with the keyword: FUNCTION_BLOCK. Then
comes the name of the function written in the <Name> field. It must be an
indicative name (see chapter 6, page →) related to what task the function
performs. The return data type is written in the <RetDataType> field, as
the name of the function works as the return value.

Notice that the <RetDataType> field cannot be used in
FUNCTION_BLOCK.

The sections with VAR_INPUT, VAR_OUT and VAR_IN_OUT must
contain variables which go in and out from the function. When
VAR_INPUT is used, the function copies the variable and works on it
inside the function – without overwriting the original variable value.
VAR_IN_OUT must be used carefully as the address (a link) of the
variable is delivered to the function which performs calculations directly on
it inside the function changing its value permanently.

If a function needs to work with STRUCT or ARRAY the VAR_IN_OUT
must be used.

The order in which variables are listed inside the function indicates the
order in which the variables will appear when ‘calling’ the function.

The section VAR contains the local variables, only to be used internally in
the function. When a function ‘call’ is carried out, the local variables are
created every time the function is ‘called’ and deleted again when the
function has ended. Remember that variables must be initialized (be set to a
start value, e.g. 0) to ensure the correct value of the variables, when the
function is ‘called’.

If the function needs to save local variables at each ‘call’, either a
FUNCTION_BLOCK or VAR_IN_OUT must be used, so that the
function works on variables created outside the function.

The PLC code, the function is to execute, is written in the
<Implementation> section.

When a FUNCTION is used, the return parameter must be set BEFORE the
function ends. It is set by using the name of the function which will be
assigned the return value. In the above syntax, the return parameter is set to
123. Only one return parameter can be set in this way. If more return
parameters are needed, use the VAR_OUT and/or VAR_IN_OUT.

10.4 Design guide for implementation of a function

This chapter contains tips and a guideline to implement a function.

The aim when developing functions is to achieve fewer program errors and
create reusable program code resulting in a more structured program.

To create reusable code, a function:

1 May not use variables directly from a program module or global
variables. The function must not have direct access to specific I/O
modules. Variables must be accessed by using VAR_IN, VAR_OUT
and VAR_IN_OUT.

2 Must have a general name which indicates what the function does. It
should preferably not be the same as the specific PLC type, company
name, your name or specific sensor numbers and sensor names. Create
an independent, but indicative name.

3 Must be created so it can be used by another PLC type and
programming language.

4 Should be able to be called from both a program module and another
function.

5 Should only have a maximum of 8 IN-OUT parameters (variables), as it
can be difficult to maintain a good overview of a large number of
variables. If multiple variables are needed, a STRUCT can be created to
group them. If STRUCT is used, the variables must be created in the
VAR_IN_OUT section. Typically, a function has 1 to 4 input
parameters and 1 output parameter. A description of the STRUCT must
be included in the documentation for the function.

6 Must check if all variables entered into it are valid. A function must not
become unstable or produce a Run Time Error (RTE) if the function
receives invalid variables. The function can contain a return variable
such as Error, which indicates that the function could not perform the
task due to parameter errors. The function must ensure that no invalid
values are returned.

It is recommended that a function only has the amount of PLC code that can
be seen on the screen during the programming - 20 - 25 program code lines.
If the PLC code is longer, there will be a need to create another function or
try to reduce the number of PLC code lines.

It is not a technical requirement that the program code in a function is
written in ST.

A function can use other functions as well as timers and counters. If a
function uses timers and counters, it must be created as a function block. If
the function block uses timers, the function block must be called in each
program scan.

IMPORTANT: A function must never make a function call to itself!

When coding a function, there are two methods to be followed:

A) The Top-down design method

First, find a useful name for the function. Use a name that indicates what
the function does. Then create a list of variables the function needs in order
to solve the programming task, and a list of the variable(s) the function has
to return. The list should include requirements for the variables, their data
type and the variable value range (minimum and maximum values).

It is advantageous to use a variable data type which makes it easy for those
who use the function. Conversion between data types has to be carried out
inside the function. This is for example relevant if the function using a
TIME data type, where it may be better to use a WORD data type instead,
because the TIME data type is composed of numbers and letters.

It can give a good overview, to draw a block diagram of the variables:

Write down what the function should do. This description can be used as
comments in the program code later on making it worthwhile doing.

B) The Bottom-up design method

Using this method, you start by writing individual pieces of program code.
When the program code is working well, it is moved bit by bit to a function
or a function block using method A.

If you do not have much experience with writing program code for
functions and function blocks, the bottom-up design method is good to use.

TIP: If some of your code lines are copy-pasted and then adapted, you
often need to move the code to a function!

REMEMBER: A function can be seen as a black box. When the function
works well, you don't have to think too much about what's going on inside
the box.

Program structure of a function

To obtain a good structure, it is recommended to follow this guide:

The program execution starts inside the function.
The local variables are created in memory.

The first task of the function is to ensure that the variables that were
included in the function call are valid.
In addition, local variables must have a start value assigned.

The function performs the specific task. It may be calculations or data that
need to be moved or processed.

As the last step, the return variables have to be assigned a value. If it is a
function block, the local variable values must be updated to be ready for the
next time the function is used.
A function will lose all local variable values when the function is finished.

The local variable values are removed from memory and lost.
The function is finished.

Following these guidelines when using functions, you will achieve:

A better and clearer program structure.

Code reusability and fewer program errors (program bugs).

The potential of speedier future expansion of the program.

The ability to easily perform part tests on the program.

The ability to easily disable Functions during debugging.

There are many possibilities to create useful functions. Below is a list for
inspiration:

Conversion between units of measurement from sensors.

Calculation of expected time until next service for motors and
pumps.

Calculation of conveyor belt speed.

Calculation of OEE (Overall Equipment Efficiency).

Alarm monitoring of machine components.

Code which can be reused in other programs.

Estimation of expected production time.

The following pages contain examples of functions.

10.4.1 EXAMPLE: FC for conversion of temperature

This example shows an implementation of a function converting
temperatures from Celsius (Centigrade) units to Fahrenheit units. It is
implemented in a function as it is a mathematical calculation being reused
many times in the program.

A FUNCTION, named fcTemperatureCalculateCtoF, is created to
return a REAL variable, as calculations with temperature are often decimal
numbers. The name of the function starts with ’fc’ to show that it is a
function. The rest of the name is chosen, because it suits the task of the
function. The name begins with a noun: Temperature and a verb: Calculate

and the letters: C to F which indicates that the func-tion undertakes a
conversion - A Celsius (Centigrade) temperature is converted to a
Fahrenheit temperature.

The function has one single input parameter named TemperatureC which
is created in the VAR_INPUT section as shown below. It is of the data type
REAL, because the parameter (Celsius/Centigrade temperature) is a
decimal number:

FUNCTION fcTemperatureCalculateCtoF : REAL
VAR_INPUT

TemperatureC: REAL;
END_VAR

The PLC code inside the function is shown below:

//This function converts a Celsius temperature
//to a Fahrenheit temperature
//Input parameter REAL is in Celsius
//Out parameter REAL is in Fahrenheit
fcTemperatureCalculateCtoF:= (TemperatureC * 9.0/5.0) + 32;

The formula used for the conversion is found on the Internet.

The return parameter is the name of the function with the data type REAL.
Comments in the beginning of the function are made to explain to other
programmers what the function does. Good programming always includes
comments in the beginning of the function, even if the function name is
self-explanatory.

Below is shown how the function can be used, where TempF is a REAL
datatype:

TempF := fcTemperatureCalculateCtoF(23.6);
//The value is copied to TempF and is 74.48 (REAL data type)

The function is ‘called’ with the value of 23.6 (Celsius/Centigrade
temperature degrees C). The function returns the calculated Fahrenheit
value in the variable TempF.

To test the function find a temperature calculation website on the Internet.
Test large and small values in the function, and check if you get the same
result using the website. It is always important to test functions thoroughly,
because it can be difficult to find errors as programs increase in size and are
made up by many functions and program modules.

10.4.2 EXAMPLE: FC to calculate average

The following chapter shows an example of a function, which calculates the
average pressure of two sensors. There is no need to save values, so a
FUNCTION is created. The function is named ValueAverage with two
input parameters: Value1 and Value2; both of the data type REAL. Even
though it is an average of two pressure measurements, one single function is
created with a general name, so that the function can be reused.

The calculated value is of the data type REAL, and this is defined as a
return parameter for the function by writing REAL in the first line of the
code as shown:

FUNCTION ValueAverage : REAL //REAL is the return parameter
data type
VAR_INPUT
Value1 : REAL; //Input parameter 1 to the function
Value2 : REAL; //Input parameter 2 to the function

END_VAR
VAR
Sum : REAL; //Local variable for temporary calculation

END_VAR
Sum:= Value1 + Value2; //Total sum
Sum:= Sum/2; //Average

ValueAverage:= Sum; //Set the return parameter

In the last line the return value is set. This means that the ValueAverage is
assigned a value before the function ends which ensures that the calculated
value can be used outside the function. The variable sum is a local variable
and can therefore not be used outside of the function. This creates a good
program structure and is a ‘black box’ to calculate an average of two
values.

There are several different ways to use the ValueAverage function. The
variables below: Avg1, Avg2, Avg3, Sensor1Pressure, Sensor2Pressure
are all of the data type REAL, because it is the data type which the
ValueAverage function uses as input parameters and return parameter.

Examples of how to use the ValueAverage function:

//Example #1: Use the function variable names
Avg1:= ValueAverage(Value1:= 85.1, Value2:= 17.6);
//Example #2: Use value only
Avg2:= ValueAverage(85.1, 17.6);

//Assign values to main variables
Sensor1Pressure:= 85.1;
Sensor2Pressure:= 17.6;

//Example #3: Use main variables
Avg3:= ValueAverage(Sensor1Pressure, Sensor2Pressure);
//Example #4: Combination of #2 and #3
Avg4:= ValueAverage(Value1:= Sensor1Pressure, Value2:=
Sensor2Pressure);

When a FUNCTION is used, all input parameters must have a value. When
using a FUNCTION_BLOCK not all input parameters require a value.
However, it is a good idea to assign all input parameters a value, because it
indicates that the programmer knows how to use parameters and remembers
them.

The order of which parameters are ‘called’ in the function is important
and remains the same as when the function was created. Therefore, Value1
has to be written first followed by Value2.

ValueAverage is a function and therefore it is not necessary to write the
parameters Value1:= and Value2:= as shown at #1 and #4.

The PLC code inside a function MUST take into consideration whether
input parameters are missing, invalid or parameters are outside the
permitted range. The PLC code inside the function must be stable and able
to be executed, even if input parameters are missing, are wrong or invalid.

Furthermore, the programmer, who uses the function must also ensure that
the function is ‘called’ with valid input parameters. The programmer must
write a description of the function explaining the mode of operation and
input parameters. Most importantly, the function is not ready to be used
before it has been tested!

10.4.3 EXAMPLE: FC for level measurement in tank

This example shows how a function can be used to check if a signal is
inside a measurement range. As shown on the diagram below, the liquid
level in a tank is divided into different measuring ranges. A light turns on
when the level in the tank reaches a specified range.

A function is used to check whether values are inside measurement ranges,
which makes it easy to reuse the code. If a function was not used here, the
same PLC code lines would have to be written three times, which is bad
program structure.

The illustration below shows the connection between components, PLC and
code:

The PLC code is shown on the next page, where CONSTANTs are used to
define the different limits of the measurement ranges. When using
CONSTANT the limit values are easy to change as they are only required
to be made in one place.

The signal from the submerged level sensor inside the tank has a 4-20 mA
signal, and is connected to the analog input card (AI). In this example, the
analog signal is scaled to a range from 0 to 10000 and therefore a WORD
data type is used.

The function uses the relational operator > = (greater than) when comparing
with LevelMin, and therefore 1 must be added to TankLowLimit and
TankHighLimit before calling the function, otherwise two lights will be
turned on when levels are exactly 1000 or exactly 7000.

FUNCTION FC_InsideRange : BOOL
VAR_INPUT

Level: WORD;
LevelMin: WORD;
LevelMax: WORD;

END_VAR
//The FUNCTION returns TRUE if Level is
// inside MIN and MAX range. If not inside range FALSE is returned
IF Level >= LevelMin AND Level <= LevelMax THEN

FC_InsideRange:= TRUE;
ELSE

FC_InsideRange:= FALSE;

END_IF;

PROGRAM MAIN
VAR
L1_Red: AT %IX0.0 BOOL := FALSE; //OUTPUT

Connection to Lamp
L2_Yellow: AT %IX0.1 BOOL := FALSE; //OUTPUT

Connection to Lamp
L3_Green: AT %IX0.2 BOOL := FALSE; //OUTPUT

Connection to Lamp
END_VAR
VAR CONSTANT
TankMaxLimit: WORD := 10000;
TankHighLimit: WORD := 7000;
TankLowLimit: WORD := 1000;
TankEmpty: WORD := 0;

END_VAR
VAR

TankLevel: AT %IW3 WORD := TankEmpty; // Analog sensor.
Range 0 - 10000

END_VAR
//Main PLC program code
L1_Red:= FC_InsideRange (TankLevel, TankEmpty,
TankLowLimit);
L2_Yellow:= FC_InsideRange (TankLevel, TankLowLimit + 1,
TankHighLimit);
L3_Green:= FC_InsideRange (TankLevel, TankHighLimit + 1,
TankMaxLimit);

//This code can be used as test code, when there are no sensor
connected:
//TankLevel:=TankLevel + 1;

10.4.4 EXAMPEL: FC to linear scaling of sensor signal

This chapter describes a function that can be used for linear scaling of an
analog sensor signal. Normally this type of function can be found in the
PLC progam library, or the function exists directly on input or output card.

This example will help you learn and understand the mathematics behind
linear scaling and the construction of a function.

Scaling of values is needed when a value needs to follow a different scale.
The example to the right involves a sensor value from the measuring range
of 4-20 mA, which must be scaled to a measuring range of 0 to 100%.

The linear scaling method consists of a straight line (1) in a coordinate
system as shown on the diagram.

A value (2) from the signal measuring range [mA] on the x-axis
corresponds to a specific value (3) in percentage on the y-axis.

A linear scale uses the formula of a straight line: y = ax + b
Where the slope is calculated using the formula: a = (Vo2 – Vo1) / (Vi2 –
Vi1)
The point of intersection on the y-axis b is found: b = y – ax => b = Vo2 –
a * Vi2
The function must take Vi1, Vi2, Vo1 and Vo2 as input parameters because
the values are used in the calculation, and this makes the function general.

The value to be scaled is x (shown as Vi). The value to be calculated is y
(shown as Vo).

When designing and writing the code for the function, the variable names:
x, y, Vi1, Vi1, Vo1 and Vo2 will be replaced with meaningful variable
names. For internal calculations, the variable names a and b are used,
because they are used in the formulas, and it will therefore be easier for
other programmers to understand the calculations.

It is very important that the function checks that the input parameters are
inside the valid range, because invalid values can result in an unstable
program. Therefore, the first code lines inside the function checks whether
the input values are valid. If input values are invalid, the variable Error
ensures that the output value is set to zero (0).

Lastly, the function is tested with different input parameters to make sure
the function works as expected. This is called program module testing.

FUNCTION Scale : REAL
VAR_INPUT
ValueIn: REAL; // (Vi) Value to be scaled
ScaleInMin: REAL; // (Vi1) Scale in Min value. Must be lower

than ScaleInMax
ScaleInMax: REAL; // (Vi2) Scale in Max value. Must be higher

than ScaleInMin
ScaleOutMin: REAL; // (Vo1) Scale out Min. Must be lower than

ScaleOutMax
ScaleOutMax: REAL; // (Vo2) Scale out Max. Must be higher than

ScaleOutMin
END_VAR
VAR

a: REAL; // Slope of the curve
b: REAL; // Intersection with y-axis
Error: BOOL := FALSE; // Input value error. TRUE if error
END_VAR
//First check that input values are valid
IF ScaleOutMin >= ScaleOutMax THEN

Error := TRUE;
END_IF;

//Check value to avoid division by zero
IF ScaleInMin >= ScaleInMax THEN

Error := TRUE;
END_IF;

//Check valueIn is inside range
IF ValueIn < ScaleInMin OR ValueIn > ScaleInMax THEN

Error := TRUE;
END_IF;

//Perform calculation if no error
IF Error = FALSE THEN

a:= (ScaleOutMax - ScaleOutMin) / (ScaleInMax - ScaleInMin);
b:= ScaleOutMax - (a * ScaleInMax);
//Set output value: y=ax + b
Scale:= a * ValueIn + b; //Return value

ELSE
Scale:= 0; //Return zero (0) in case of input value error

END_IF;

Below the function is tested with different input values. Both invalid and
valid input values are used to ensure that the function works as expected:

Value0 := Scale(12, 4, 20, 0, 100); //Expected result: Value0 = 50
Value1 := Scale(-2, 4, 20, 0, 100); //Expected result: Value1 = 0
Value2 := Scale(20, 4, 20, 0, 100); //Expected result: Value2 = 100
Value3 := Scale(6, 20, 4, 100, 1100); //Expected result: Value3 = 0

Value4 := Scale(5, 4, 20, 100, 1100); //Expected result: Value4 = 162.5

11 Working with text and chars, STRING

STRING is the data type to be used, when working with text. Shown below
are some areas where a PLC uses text and characters (char):

Showing dynamic texts and digits on HMI (Human Machine Interface):

Online changes between languages on a user operation panel
(e.g. switch between Danish and English language user
interface with no changes to the PLC code) (multi user
language change)

Messages and instructions to the user: production information,
typing in passwords, reading of letters, time/date, alarm texts

Handling files and database data:

Reading data from files on a hard disk (e.g. settings of
equipment and instrumentations, configuration files, set points)

Data logging of data or event measurements (e.g. changing
settings or mechanical condition changes)

Texts read from hard disk or flash card

Messages to/from production systems (ERP, SAP, MES, WCS)

File names, folder names, e-mail

Data communication between PLC/PC/Instruments:

Instruments send data in ASCII (e.g. BAR/QR codes, RFID,
TAGS)

Information to label printer (e.g. labels to boxes, production
dates)

SMS (e.g. alarms/commands to/from mobile phones)

Numbers with many digits mixed with letters

Data measurements, alarms, information from automation
equipment

The following lists the data types dealing with text:

Data type Description
CHAR Contains one character only (ASCII) (8 bit)
WCHAR Contains a wide character (16 bit) (UNICODE, ISO 10646)
STRING ARRAY of CHARS [0..254], for sentences (254 is max.)
WSTRING ARRAY of WCHAR [0..254], for sentences (254 is max.)

Used for PLC controls handling multiple languages on HMI
(Human Machine Interface) (UNICODE, ISO 10646)

NOTICE:

Only use STRING when necessary, because it requires
CPU power and uses a lot of memory.

Only create STRING with the array length needed.

Not all PLC types provide the data types CHAR and WCHAR. If a variable
only has one single sign (character), create a STRING[1] or a BYTE.

IMPORTANT: The length of a STRING is defined by counting
characters until element 0 (zero) is found in the ARRAY (some
programming languages puts the length of the STRING at element zero,
which is important to know if a PLC communicates with other equipment)

A STRING shows characters by using an ASCII table. These are saved as
integers in an ARRAY, because a CPU is only able to save data in integers.

Below is shown an ARRAY with integers and the corresponding characters
from the ASCII table:

A PLC typically provides a maximum length of 255 characters in a
STRING. If a text is longer than 255 characters, the text can be split up into
several STRINGs.

A STRING can be created with or without a fixed length as shown below:

PROGRAM DemoString
VAR
szDemo: STRING := ’No fixed length’;
szDemoFix: STRING[35] := ’Fixed length string’;

szEmpty: STRING := ''; //String without text
szDemoW: WSTRING := " This is a UNICODE string "; //Text

with 2 x ”
END_VAR

If NO length is indicated – as is the case for szDemo – the PLC uses 254
bytes in the memory + 1 (zero sign for ending the STRING is included).

If a fixed length is set – as is the case for szDemoFix – the PLC uses the
fixed length – in this example 35 bytes of the memory + 1 (zero for ending is
included).

The above indicates that the best choice is to set a maximum length on all
STRINGs. However, as texts can be dynamic during the execution of a

program, challenges can arise from using a fixed STRING length. This can
e.g. be the case when making language changes online, where texts can be 50
% longer, when changing from an English text to a French text.

It is not possible to write text with double citation sign: A “big” test. An
escape character must be placed ($ sign) before the text: A $”big”’ test.

Possible escape sequences:

Description Sequences
Dollar sign $$
Line shift $L or $l
New line $N or $n
New page $P or $p
<RETURN> $R or $r
<TAB> $T or $t
Citation sign $’
Double citation sign $” or $22

11.1 EXAMPLE: FC with STRING

Below is shown an example a FUNCTION with STRING:

FUNCTION StringDemoFUN : STRING
VAR

str4: STRING; //Internal
END_VAR
VAR_INPUT

Str1: STRING; //In
END_VAR
VAR_OUTPUT

str2: STRING; //Out
END_VAR
VAR_IN_OUT

str3: STRING; //In and Out
END_VAR
str2:= 'STR 2 string';
str3:= 'STR 3 string';
str4:= 'STR 4 string';
//Set return parameter
StringDemoFUN:= Str1;

Block diagram:

Program ’call’ to the function StringDemoFUN:

PROGRAM Main
VAR

MainStr, Mstr1, Mstr3: STRING;
Mstr2: STRING [5]; //Limited to 5 chars

END_VAR
MainStr:= ’Hello World’;
Mstr1:= StringDemoFUN (str1:=MainStr, Str2=>Mstr2, str3:=Mstr3);

//Contents of the variables are:
//Mstr1 = ’Hello World’.
//Mstr2 = ’STR 2’ //Because STRING length is 5: Mstr2[5]
//Mstr3 = ‘STR 3 string’.

NOTICE:
The variables Mstr1, Mstr2 and Mstr3 are all created with a STRING data
type. As the variable Mstr2 is created with a fixed length of 5, it will only
contain 5 characters, even if the string str2, used inside the function contains
12 characters.

11.2 EXAMPLE: Program structure for language change

This chapter consists of a proposal for a program structure, which allows
alarm texts to be displayed in different languages. If the machine is operated
by people who speak different languages, it is an advantage to enable online
language switching.

The various alarm texts are declared in an ENUM named Alarms. Each
alarm texts has a unique number through the ENUM indexation, and new
alarm strings can easily be added. Each alarm string is also declared in an
ENUM called TxtLang.

The individual alarm strings are grouped in a function where each country
language has its own function. This makes it clear and easy to make
translations into other languages. The GetAlarmTxt function is used to
select which language to use:

In the program, alarms are declared in an ARRAY. Note that the maximum
size of ARRAY is ALARMS_MAX, and is definded as the last ENUM
value.

The current language is selected by the variable TxtLanguage.

PROGRAM MAIN
VAR

MotorAlarmArr: ARRAY [0..Alarms.ALARMS_MAX] OF BOOL;
AlarmTxt: WSTRING; //Alarm text to be shown
TxtLanguage: INT := TxtLang.UK; //Language to be used

END_VAR
//Set overload alarm
MotorAlarmArr[Alarms.OVERLOAD]:= TRUE;

//Reset temperature alarm
MotorAlarmArr[Alarms.TEMPERATURE]:= FALSE;

//Get the alarm text for OVERLOAD
IF MotorAlarmArr[Alarms.OVERLOAD] THEN

AlarmTxt:= GetAlarmTxt(TxtLanguage, Alarms.OVERLOAD);
END_IF;

The below contains example code for the ENUM and functions:

TYPE Alarms :
(NONE_ALARM, TEMPERATURE, NO_OF_STARTS,
OVERLOAD, ALARMS_MAX);

END_TYPE

TYPE TxtLang :
(None, UK, US, DK , DE, ES); // Country codes

END_TYPE

FUNCTION GetAlarmTxt : WSTRING
VAR_INPUT

Language: WORD;
AlarmNo: WORD;

END_VAR
VAR_OUTPUT

AlarmTxt: WSTRING;
END_VAR
VAR

Str : WSTRING;
END_VAR

//Program code for GetAlarmText
CASE Language OF

TxtLang.UK : Str:= GetAlarmTxt_UK(AlarmNo);
TxtLang.DK : Str:= GetAlarmTxt_Dk(AlarmNo);

ELSE
Str:= "Unknown langauge selected";

END_CASE;

//Set return value
GetAlarmTxt:= Str;

FUNCTION GetAlarmTxt_UK : WSTRING

VAR_INPUT
// Get Alarm Text for the AlarmNo
AlarmNo: WORD;

END_VAR
VAR

// The alarm text for the AlarmNo
Str: WSTRING;

END_VAR

//Program code for GetAlarmTxt_UK
CASE AlarmNO OF

Alarms.NONE_ALARM : Str:= "No Alarms";
Alarms.TEMPERATURE : Str:= "A1 Motor Temperature";
Alarms.NO_OF_STARTS : Str:= "A2 Too many starts";
Alarms.OVERLOAD : Str:= "A3 Motor overload";

ELSE
Str:= "Alarm Text not found";

END_CASE;

//Set retun value
GetAlarmTxt_UK:= Str;

FUNCTION GetAlarmTxt_DK : WSTRING

VAR_INPUT
// Get Alarm Text for the Alarm No
AlarmNo: WORD;

END_VAR
VAR

// The alarmtext for the AlarmNo
Str: WSTRING; for the AlarmNo

END_VAR

//Program code for GetAlarmTxt_UK
CASE AlarmNO OF

Alarms.NONE_ALARM : Str:= "Ingen alarmer";
Alarms.TEMPERATURE : Str:= "A1 Motor temperatur";
Alarms.NO_OF_STARTS : Str:= "A2 For mange motor start";
Alarms.OVERLOAD : Str:= "A3 Motor overbelastet";

ELSE
Str:= "Alarm tekst ikke fundet";

END_CASE;

//Set return value
GetAlarmTxt_DK:= Str;

11.3 Standard functions, STRING

The built-in standard STRING functions are shown below. Some PLC types
provide more functions which can be found in the manufacturer’s
programming manual.

If a different STRING function is needed, the programmers have to write the
code and implement it themselves, or try to find a function on the internet.

The max length for STRING in the standard functions is 255 characters.

CONCAT

Connects two STRING
STR2 is inserted after STR1

Str3:= CONCAT (STR1 := ’AB’, STR2:=’CD’);
//Str3 = ‘ABCD’ alternatively use: Str3:= CONCAT (’AB’, ’CD’);

INSERT

Inserts a STRING in another STRING at a certain position. STR2 is
inserted in STR1 at POS position

Str3:= INSERT (STR1:=’ABCD’, STR2:=’EFGH’, POS:=2);
//Str3 = ‘ABEFGHCD’ Str3:= INSERT ('ABCD', 'EFGH', 2);

DELETE

Delete some part(s) of a STRING. IN1 is the STRING From position
POS the amount, which LEN indicates, is deleted

Str3:= DELETE (IN1:=’ABCDEFG’, LEN:=2, POS:=3);
//Str3 = ‘ABEFG’ Str3:= DELETE ('ABCDEFG', 2, 3);

REPLACE

Replaces some parts(s) of a STRING. L characters in STR1 is deleted.
STR2 is inserted from position P

Str4:= REPLACE (STR1:=’ABCDEFG’, STR2:=’X’, L:=2, P:=3);
//Str4 = ‘ABXEFG’ Str4:= REPLACE ('ABCDEFG', 'X', 2, 3);

FIND

Find a STRING in another STRING. A match for STR2 is searched for in
STR1.
An INT is returned with the position where STR2 was found in STR1.
If nothing is found, 0 (zero) is returned. The FIND function is case
sensitive, i.e. it distinguishes between upper case and lower case letters.

Int1:= FIND (STR1:=’ABCBCDEFG’, STR2:=’BC’);
//Int1 =
2

’BC’ is found first at
position 2

Int1:= FIND (’ABCBCDEFG’,
’BC’);

LEN

LEN finds the length of a STRING. Counting numbers of characters in
STR

An INT with the length is returned.

Int2:= LEN (STR:= ’Demo’);
//Int2 = 4 alternatively use: Int2:= LEN (’Demo’);

LEFT

LEFT keeps some part(s) of a STRING starting from the left.
The first parameter STR is STRING and the second parameter SIZE is
the number of characters which is counted.

Str6:= LEFT(STR:=‘1234567’, SIZE:=2);
//Str6 = ’12’ alternatively use: Str6:= LEFT(‘1234567’, 2);

RIGHT

RIGHT keeps some part(s) of a STRING starting from the right.
The first parameter STR is STRING and the second parameter SIZE is
the number of characters which is counted.

Str6:= RIGHT (STR:=‘1234567’, SIZE:=2);
//Str7 = ’67’ alternatively use: Str7:= RIGHT(‘1234567’, 2);

MID
MID keeps some part(s) of a STRING.

The first parameter STR is STRING, LEN is the length of what will be
retained, and POS is the starting position of what will be retained.

Str7:= MID (STR:=‘1234567’, LEN:=2, POS:=3);
//Str8 = ’34’ alternatively use: Str8:= MID(‘1234567’, 2, 3);

As STRING is an ARRAY, not all PLC types support the use of relational
operators (see chapter 7.2, page xx, side 41) directly on a STRING. The
built-in FIND and LEN functions must be used when comparing texts:

Str1 := 'abc';
Str2 := 'abc';

IF Str1 = Str2 THEN
Str3:= 'Ens';

END_IF;

Str1 := 'abc';
Str2 := 'abc';

IF FIND (Str1, Str2) > 0 THEN
IF LEN (Str1) = LEN (Str2) THEN

Str3:= 'Ens';
END_IF;

END_IF;

For converting numbers, the built-in data type conversion functions can also
be used on STRINGs (see chapter 8.6, page →) as seen below:

myInt:= STRING_TO_INT(‘123’);
myReal := STRING_TO_REAL (‘12.45’);
myStr1 := REAL_TO_STRING (23.67);

Before conversion functions are ‘called’, the string (which is the input
parameter) must be checked to ensure the function does not receive
characters in a string which are not convertible. It might be unclear what will
happen if the PLC program converts e.g. ‘ABC’ to a REAL data type. You

can find functions and function code on the internet that can be used to check
whether the contents of a string is a number. The IsNumber function is an
example of this, and can be found via a google search.

IMPORTANT: In some PLC types, STRING standard functions
are not ‘thread safe’. This means that the best choice is to only
make use of them in PLC code being executed in the same PLC-
task.

Some PLC types support functions to handling wide strings: Like
WCONCAT or WLEN.

As STRING is an ARRAY, it is possible to insert a character directly into it.
Below three different examples are shown, as different PLC types handle this
differently:

str1:= 'My String';
str1[2]:= 'A'; //Solution 1, insert ‘A’ into location 2 in str1
str1[2]:= 65; //Solution 2, where 65 is 'A' in the ASCII tabel
str1[2]:=
F_toASC(‘A’);

//Solution 3, use a built-in function named
F_toASC

//The resulting string is ‘MyAString’ where ‘A’ is overwriting
<SPACE> in str1

11.4 EXAMPLE: FC Find numbers in a STRING

This example describes a function that can be used to find a number in a
particular position in a STRING containing numbers separated by a
semicolon (;):

’10;30;45;200;4;5;3;4;23;30;90;8;65’

The function is used in the example found on page →, where each number in
the STRING is used to execute sub-programs for a car wash. The user can
enter the subprograms that a complete car washing program should include.
The example here also shows how to use the STRING standard functions.

A block diagram of the function and parameters used is shown below:

Where:
No (INT): Find the number at this position in Str.
Str (STRING): The String with numbers
Return value (INT): Return the numbers found at position No. Return
zero (0) if no number is found, or if numbers not are separated by a
semicolon.

A FUNCTION is used to ensure that the program code can easily be reused.

Program example for using and calling the function:

//no1, no2 and no3 are INT datatype
no1:= GetNoFromString (2,
'1;10;12;11;10;10;10');

//Return: no1 = 10 (at position
2)

no2:= GetNoFromString (4,
'7;10;13;14;10;15;10');

//Return: no2 = 14 (at position
4)

no3:= GetNoFromString (6,
'3;11;120;43;20');

//Return: no3 = 0, because not
found

The program code can be found on the next page. The code is split up into
two sections: The first section verifies that the STRING only contains
numbers and semicolons, and ensures not continue in case of a non-valid
STRING. Verification is performed by comparing each character, with
characters in the ASCII table. The character semicolon (';') has number 59 in
the ASCII table, and the numbers between 48 and 57 are all found in the
ASCII table.

The PosEnd variable points to the semicolon after the number to be returned.

The last section of the program finds the number in Str. The number can be
up to 3 digits long. Finally, the returned number is converted from a
STRING to an INT

FUNCTION GetNoFromString : INT
VAR_INPUT

No: INT; // Get number. Return zero (0) if nothing is found
Str: STRING; // The current string can be ’23;4;34;100;2;60’

END_VAR
VAR

StringOk: BOOL := FALSE; // valid if STRING it contains numbers
and ';'

i: INT; // Counter for the FOR loop
PosEnd: INT; // Pointer to the ';' after the number found
SepNO: INT := 0; // Count no of ';' in the STRING

END_VAR
//Input string can be '1;3;7;10;101;12;1;' or '234;3;78;8;43;100'

Str:= CONCAT(str,';'); //Place ';' after last number
Str:= INSERT(str,'00', 0); //To allow more than 2 digits
GetNoFromString:= 0; //Sets 0 as return value if string not valid

FOR i:= 0 TO LEN(Str) DO //Consider each sign in the STRING
IF Str[i] = 59 OR (Str[i] >= 48 AND Str[i] <= 57) THEN //ASCII ‘;’
or 0..9

StringOK:= TRUE; //Text ok
IF Str[i] = 59 THEN //ASCII check is ';' found

SepNO:=SepNO + 1; //Number of ';' in the STRING
IF SepNO = No THEN //Position found

PosEnd:= i + 1; //Where no is ended
END_IF; //SepN0
END_IF; //str[i]

END_IF;
END_FOR;

IF StringOK = TRUE THEN //If STRING ok, get value

Str:= MID(Str, 3, PosEnd - 3); //Number has max 3 digits
i:= FIND(Str,';'); //Any ';' found?
IF i = 2 THEN //If like '2;3' => '003'

Str[1]:= 48; Str[0]:= 48; //Place '00'
END_IF;
IF i = 1 THEN //If like ';23' => '023'

Str[0]:= 48; //Place '0'
END_IF;
GetNoFromString:= STRING_TO_INT(str); //Return value

END_IF;

The GetNoFromString function contains 29 lines of code including
comment lines. This is a lot of lines, and more than the recommended 20-25
lines of code for a readable and clear program structure. Sometimes it is not
possible to reduce the number of code lines to keep a good program structure,
but this part of the program code:

i:= FIND(str,';'); //Any ';' found?
IF i = 2 THEN //If like '2;3' => '003'

Str[1]:= 48; Str[0]:= 48; //Place '00'
END_IF;
IF i = 1 THEN //If like ';23' => '023'

Str[0]:= 48; //Place '0'
END_IF;

Can be reduced to this, where CASE is used instead of IF statements:

CASE FIND(str,';') OF //Any ';' found?
2 : Str[1]:= 48; Str[0]:= 48; //If like '2;3' => '003'
1 : Str[0]:= 48; //If like ';23' => '023'

END_CASE;

The code now consists of 4 lines instead of 7 lines. In addition, the variable i
is no longer used in the program code. The variable i is used earlier in the
function, as it is also used as a counter in the FOR loop.
It is possible to reuse variables, to reduce the number of variables which need
to be created. However, reusing variables can also make the code more

unreadable.

If using STRING functions and CASE statements, the program code looks
like this:

CASE FIND(str,';') OF //Any ';' found?
2 : Str:= REPLACE(Str, '00', 2, 1); //If like '2;3' => '003'
1 : Str:= REPLACE(Str, '0', 1, 1); //If like ';23' => '023'

END_CASE;

If only STRING functions are used, the code will look like this:

Str:= RIGHT (Str, LEN(Str) - FIND (Str,';')); //Remove any ‘;’

The point is that the four sections of program code all work in the same way,
but they use different methods and functions. It is important to write code, so
other programmers can understand it, and easily change the code at a later
stage.

11.5 FB: Optimize insertion of values into STRUCT

Example page →, shows how values can be inserted into an ARRAY and a
STRUCT to configure different washing programs. If you want to insert
many values, the code can quickly become very long which is not good
program structure. The program code to insert values into ARRAY and
STRUCT looks like this:

ArCarWash [1].ProgramName := 'Budget Wash';
ArCarWash [1].ProgramNumbers := '1;11;20;';
ArCarWash [1].Cost:= 10;

Optimization of the above program code can be carried out by using
FUNCTION.

There are four different values: [1], ProgramName, ProgramNumbers and
Cost and therefore a function with four input parameters must be used. It is

important that the function checks that the input parameters are inside the
valid range, because invalid parameters can cause the program execution to
stop.

To create a good program structure, the ArCarWash variable is also an input
parameter to the function.This means that function variables are not written
directly to a variable in the program module. A function can write directly to
a program module by changing VAR to VAR_IN for the ArCarWash
variable in the program module where ArCarWash is declared.

ArCarWash is an ARRAY and it is therefore only the address which is
transferred to the function using the variable scope VAR_IN_OUT.

The NoError variable is used to ensure that values are only written to
ArCarWash if they are valid. The variable is set to FALSE each time the
function is called and does not change if an error is found with one of the
parameters. The return value can be used to notify the programmer/operator
that input parameters were invalid.

The internal variables IndexMin, IndexMax and CharTemp are used to
provide a good program structure and ensure that code lines are not too long.

The program call for the function is:

FCWashPrgConfig(ArCarWash, 1, 'Budget Wash', '1;11;20;', 10);

By using a function, the program is reduced from three lines of code to a
single line.

In addition, the parameters are now also checked to see if they are inside the
valid value range.

See the next page to view the program code for the function:

FUNCTION FCWashPrgConfig : BOOL
VAR_IN_OUT

WashArray: ARRAY [*] OF CarWashType; //Pointer to the ARRAY
which can have any size

END_VAR
VAR_INPUT

Index: WORD; //Index to the WashArray
Name: STRING; //Name to be inserted
Numbers: STRING; //Numbers in a STRING to be inserted
Cost: REAL; //Cost to be inserted

END_VAR
VAR

i: WORD; //For the FOR loop
IndexMax,
IndexMin:

WORD; //Max and Min Index of the WashArray

NoError: BOOL := FALSE; //Set default to FALSE
CharTemp: STRING; //One char found in the Number

STRING
END_VAR

//Program code for FCWashPrgConfig

//Get and save Index as it is used more than once in the code
IndexMin:= DINT_TO_WORD(LOWER_BOUND (WashArray,1));
IndexMax:= DINT_TO_WORD(UPPER_BOUND (WashArray,1));

//Check that Index is inside the ARRAY min and max range
IF Index >= IndexMin AND Index <= IndexMax THEN

NoError:= TRUE; //Ok
END_IF;

//Check that "Numbers" contains valid chars
IF NoError THEN //Only perform if no error

FOR i:= IndexMin TO IndexMax DO //For each char in the
Numbers ARRAY

CharTemp:= MID(Numbers, 1, INT_TO_WORD(i)); //Get next
char in the Numbers STRING
IF ((FIND (';0123456789',CharTemp) = 0) AND NoError) THEN
//Valid char?

NoError:= FALSE; //An error found in the Numbers STRING
END_IF;

END_FOR;
END_IF;

//Insert all values if there is no error
IF NoError THEN

WashArray[Index].ProgramName:= Name;
WashArray[Index].ProgramNumbers:= Numbers;
WashArray[Index].Cost:= Cost;

END_IF;

//Set return to signal TRUE or FALSE. If TRUE no values are inserted
FCWashPrgConfig:= NoError;

12 Built-in standard functions

This chapter describes a number of built-in standard functions. When to use
them depends on the task. Bear in mind that the functions can be named
differently in different PLC types. This means that if the standard built-in
functions are used, it can make it more difficult to copy the PLC code to
other PLC types, because the code might need to be adjusted.

12.1 First program execution: First ScanBit

Some part(s) of the PLC code might need to be executed once only right
after powering up the PLC (PLC turn on). It could be digital outputs that
must be initialized to a certain value to ensure that e.g. signal lamps turn on
with the correct color light, or a valve is set to OFF. Maybe internal
variables, counters and arrays must be reset to zero at startup.

Some PLC types provide a first-scan-bit or FirstCycleBit for this purpose.
However, if the PLC does not provide such a feature, the below PLC code
can be used:

PROGRAM MAIN
VAR

FirstScanBit : BOOL := FALSE; //#2
END_VAR
//Set first scan bit
IF FirstScanBit = FALSE THEN //#3

// Initialization code here, or call to a program module
// code here will be executed only once
FirstScanBit := TRUE; // #1

END_IF;

Mode of operation:

A BOOL variable FirstScanBit is created which is initialized in the
variable section to FALSE (see #2). This causes the first-scan-bit to always
be initialized as FALSE, when starting up the PLC. When the PLC code is
executed the first time, the PLC code within the IF statement will be
executed as FirstScanBit is FALSE (see #3). When FirstScanBit is set to
TRUE the PLC code #1 is never executed again.

12.2 Edge detection (One shot): R_TRIG, F_TRIG

There is often a need for PLC code to only be executed once related to a
certain action. It can be a sensor switch which is activated triggering the
execution of specified PLC code (e.g. a sensor counting objects on a
conveyer belt). When the sensor switch is activated, the code will be
executed several times due to the mode of operation of which a PLC
executes a program. Take this into account and write code to prevent
multiple code executions, if you need to.

There are two standard function blocks to make sure that code is only
executed once:
R_TRIG (One Shot Rising, positive edge detecting, OSR)
The function R_TRIG provide an input parameter CLK and an output parameter Q, both of the data
type BOOL.
R_TRIG is used on a rising signal, where CLK goes from FALSE to TRUE and when it happens, Q
is TRUE during one program-scan.

F_TRIG (One Shot falling, negative edge detecting, OSF)
The function F_TRIG provide an input parameter CLK and an output parameter Q, both of the data
type BOOL.
F_TRIG is used on a declining signal, where CLK goes from FALSE to TRUE and when it
happens, Q is TRUE during one program-scan.

Below a program example is shown:

PROGRAM MAIN //Example 1
VAR
B1OneShot : R_TRIG; //One shot for the B1 sensor input
B1 : BOOL; //B1 is the sensor input

END_VAR
//EXAMPLE 1: One shot uses an instance of R_TRIG (positive flank)
B1OneShot (CLK := B1); //Calls the function block

IF B1OneShot.Q = TRUE THEN
// Run the one shot PLC code here #1 .
// Program code, a program module or a function can be written
here

END_IF;

The mode of operation is as follows:

B1 becomes TRUE when the sensor switch is activated, and B1 is the input
parameter to the B1OneShot function block. It sets the BOOL variable
B1OneShot.Q to TRUE in the program-scan, when B1 become TRUE.
In the following program-scan, B1OneShot.Q is automatically set to
FALSE by the built-in R_TRIG function. The PLC code in #1 section is
therefore only executed once.

Example 2 is a do-it-yourself solution without using R_TRIG. Here the
physical switch is B1 and when it is 1 (activated by e.g. a switch or a sensor
used for counting objects on a conveyer belt) at the same time as B1Old is 0,
the PLC code will be executed, marked by #1. When the code in #1 is
executed, B1Old is set to 1. In the next program-scan the code is not
executed. When B1 is 0 again, B1Old is set to 0.

Below the program example is shown:

PROGRAM MAIN //Example 2
VAR

B1: BOOL; //Sensor or switch
B1Old: BOOL; //Internal use

END_VAR
//EXAMPLE 2: Using own PLC code
//Detect on rising edge
IF B1 = 1 AND B1Old = 0 THEN

B1Old := 1;
//Insert PLC code here to run only once #1

END_IF;

//Reset edge detection
IF B1 = 0 THEN

B1Old := 0;
END_IF;

It is easier to copy the code from examples 2 than example 1 to another
PLC, because the different PLC types have different one shot standard
function blocks.

The execution for examples 2 can be illustrated by this time diagram:

The PLC code #1 is executed immediately after a rising edge on B1.

12.2.1 EXAMPEL FB: One Shot rising detection

This chapter shows how the code from example 2, from the previous page,
can be moved to a function block, to ensure the code can be reused easily. A
function block must be used, because the CLKOld variable must be saved
after the function call. The code works in the same way as the built-in
R_TRIG function, therefore the same input and output variable names are
used. The block diagram is shown below:

Where:

CKL: Input variable (BOOL). Digital signal from sensor.

Q: Output variable (BOOL). Is TRUE during one program scan.

The syntax "CLK = 1" cannot be used in all PLC types. Therefore, this
should be changed to either "CLK = TRUE" or "CLK". To save space the
last option is chosen.

Below find the code for the function block and flowchart:

FUNCTION_BLOCK R_OneShot
VAR_INPUT

CLK: BOOL; //Signal from sensor
END_VAR
VAR_OUTPUT

Q: BOOL; //TRUE during one program scan
END_VAR
VAR

CLKOld: BOOL; //Old Signal from last program scan
END_VAR
//FUNCTION BLOCK: R_OneShot
//Detect on rising edge

Q:= FALSE; //Init output variable

IF CLK AND NOT CLKOld THEN
CLKOld:= TRUE;
//The code here runs only once
Q:= TRUE; //Set output

END_IF;

IF NOT CLK THEN //Reset edge detection
CLKOld:= FALSE;

END_IF;

12.3 Counting functions: CTU, CTD, CTUD

A PLC provides three built-in function blocks for counting:

CTU, can count upwards
CTD, can count downwards
CTUD, can count both upwards and downwards.

Below is shown how the CTU function block can be used in ST-
programming:

PROGRAM MAIN
VAR

myCTU : CTU; // Counter UP function
S1 : BOOL; // Activate count
K1 : BOOL; // TRUE when count is finished
i : WORD; // Only for demo and test

END_VAR

// Example 1, counter using the CTU function block
//Counting to 12, auto reset
myCTU (CU:= S1, PV:= 12, RESET:= myCTU.Q);

IF myCTU.Q THEN //Counter done?
K1 := TRUE; //#1

END_IF;

i:= myCTU.CV; //Read out current count value

A variable myCTU is created as a CTU, which is a built-in standard
function block able to count upwards. CTU has three input parameters: CU

(counting), RESET (resetting counter to 0, on the positive flank) and PV
(max. counter value, where 0 is included in the counting) and two output
parameters Q (max. counter value) and CV (current counter value). CU is
set to a BOOL value by S1, which can be a physical switch. Every time it is
activated, 1 is added to the counter value. When the counter has reached a
value of 12 (counted from 0 to 11) Q is TRUE, and an IF statement sets K1
to TRUE. K1 can be used to control a lamp (see #1).

To make the counter reset automatically when the max value is reached and
restarts, RESET:= myCTU.Q is inserted in the parameters for the myCTU
function.

The advantage of the CTU function block is that it has R_TRIG built-in in
the CU input. The disadvantage is that it counts internally on a WORD
variable, and can therefore only count up to 65535. If the CTU is used for
counting objects on a machine producing an object per minute, an overrun
occurs on the internal counter after a period calculated as follows:

60 [objects/hour] => 1440 [objects/day] => 65535/1440 => 45,5 days.

Below is a solution which can count on a DWORD (double WORD)
variable:

PROGRAM MAIN
VAR

S1_trig : R_TRIG; // One short
S1: BOOL; // Activate count
K1: BOOL := FALSE; // TRUE when count is finished
i: DWORD := 0; // Counter

END_VAR

// Example 2, Counter with DWORD
S1_trig (CLK:= S1); // Calling R_TRIG, S1 is input

IF S1_trig.Q THEN //Count up if positive trig signal
i:= i + 1;

END_IF;

IF i >= 12 THEN //Counter done? #1)
K1:= TRUE; // Set output
i:= 0; // Reset counter

END_IF;

K1 becomes TRUE when the counter has counted to 12, and at the same
time the counter variable i is set to 0.
Remark: #1) To create more stable PLC code use “>=” instead of only “=”.

The mode of operation for the two examples (Example 1 vs Example 2) is
the same, Example 2 is, however, more usable:

- It can count up to 4.29 billion.

A counter can be used for counting produced parts, amounts of startups on a
pump, amount of pulses from instruments: e.g. energy meter or a flowmeter.

12.3.1 EXAMPLE: Counting of items on a conveyor belt

This example is based on code in chapter 12.2.1, page →, where a solution
for a one shot function block was shown.
It is important to test the function block before declaring it complete,
because it is difficult to find errors later when the function block is part of a
large program.

In order to test the function block, a test program is created as shown below:

The NoOfItems variable used for counting is defined by a DWORD
(Double Word) so count can go up to 4.28 million. A WORD variable will
overflow at 65535.

If the NoOfItems variable has to keep its value, when the PLC is turned off,
the variable must be declared as RETAIN or PERSISTENT. See chapter 5,
page →. B1 is a sensor that detects an item. B1 is input variable to the
R_OneShot function block, so only one pulse is detected for each item
passing the sensor. When the output variable Q is TRUE, 1 is added to the
NoOfItems variable.

S1 is a manual switch to reset the counter variable NoOfItems to zero.

The function block is ok, when the NoOfItems variable counts 1 up for each
item that passes B1, and the S1 switch can reset the NoOfItems variable.

12.3.2 EXAMPLE FC: Instrument pulse counter

Dette This section shows a function block which can be used to collect pulse
signals from measuring instruments. Some instruments have a digital output

that sends off a pulse each time the instrument has measured a certain
quantity. It can be a Watt Meter (power meter) that measures energy
consumption and gives a pulse every time it has measured 0.1 KWh. Or a
flow switch that gives a pulse every time it has measured 100 liters.

The code is a rework of the code shown in chapter 12.2.1 page →.
The code is changed to a function block, so it can be used for multiple
instruments.
The counter value is now an input parameter to the function block, so the
function block can easily be used for several different types of instruments:

FUNCTION_BLOCK PulseCount
VAR

Pulse_OneShot: R_OneShot; //R_TRIG;
END_VAR
VAR_INPUT

Pulse: BOOL; //Pulse from Instrument
Amount: REAL := 0; //Add Pulse amount
Reset: BOOL := FALSE; //Reste counter

END_VAR
VAR_OUTPUT

AmountTotal: REAL := 0; //Read out
END_VAR

//PulseCount FUNCTION BLOCK
Pulse_OneShot(CLK:= Pulse);

//Positive edge trig puls signal from instrument
IF Pulse_OneShot.Q THEN

AmountTotal:= AmountTotal + Amount; //Count up
END_IF;

//Reset counter. Manuel or if very big value
IF Reset OR AmountTotal > 100000000 THEN

AmountTotal:= 0;
END_IF;

Below find an example for testing the function block:

AmountTotal contains the total amount measured and can be reset by
Reset.

Note that high speed input counter cards or input modules often have to be
used, as the digital sensor signals from instruments often come in high
speed.

12.4 Repeated program ‘calls’ and timer delay: TON, TOF

In a PLC program, some equipment must only be turned on for a certain
period of time. For example, a motor could be programmed to run for 30
minutes per hour, the light in a staircase programmed to switch off
automatically after a period of time or a stop watch. An example could also
be an alarm signal from a level sensor in a tank which should not go off until
after a certain period of time, because wave motions in the tank can affect
the level sensor measurements. A timer solves these problems.

There are two types of standard timers in a PLC:
TON (On-delay timer, ODT, TONR, ON delay) Delayed connection

relay
A TON timer function block sets a BOOL variable Q to TRUE after a certain period of time indicated
by PT. Can be used if a component must receive a signal after a certain period of time in order to start.
Used for Noise Attenuation in an ON/OFF switch. The time where IN is activated must be longer than
PT.

TOF (Off-delay timer, OFFDT, TOFR, OFF delay) Delayed detection relay
A TOF timer function block sets a BOOL variable Q to FALSE after a certain period of time
indicated by PT.
Can be used for light in a staircase or toilet ventilation, where the system must be powered off
after a period of time. The time starts after IN is set to FALSE.

A timer is a built-in function block and provides two input parameters (IN
and PT) and two output parameters (Q and ET). The positive flank on IN
starts the timer and the time period is set on PT. Q is the signal output and
ET shows the current time.

Below a timer is shown which will remain active for 100 milliseconds after
S1 has become FALSE.

VAR
S1TimerTOF: TOF; //Create timer
S1: BOOL; //Switch

END_VAR
S1TimerTOF (IN:= S1, PT:= T#100ms);
IF S1TimerTOF.Q = TRUE THEN

//Code here will be active for 100 [ms] after S1 = FALSE
END_IF;

Example 2 below, shows how a timer can be implemented including an
automatic restart. The timer is active for 10 seconds and restarts
automatically.

PROGRAM MAIN
VAR

MyTimer: TON; //Create timer
TimerCurrent: TIME; //Only used for readout

END_VAR
//Example 2, timer automatic restart

//Start or restart timer.
Mytimer(IN:= NOT Mytimer.Q, PT := T#10S);

IF Mytimer.Q = TRUE THEN
//Write code here to be executed every 10 sec

END_IF

TimerCurrent := MyTimer.ET; //Only for readout

The mode of operation is as follows:

MyTimer: The data type is a TON function block..
TimerCurrent: Only used to be able to read the current value of the
timer – an efficient tool to make it all work.

The current value on the timer is read on the last line in the PLC code, and is
read out by copying the value, indicated on MyTimer.ET, to

TimerCurrent, which is created with the data type TIME, because it is of
the same data type as MyTimer.ET.

When the timer is active and running MyTimer.Q = FALSE. When the
timer has expired, MyTimer.Q = TRUE and the timer stops. The timer
restarts automatically, because IN is the inverted value of MyTimer.Q (use
NOT before MyTimer.Q). The parameter PT sets up the time delay, where
time is indicated by T# and a digit (in this example 10) followed by the SI-
unit (s = second, ms = millisecond, h = hour).

If the timers are to run very fast, select LTON or LTOF function block.

Using program-scan as a timer
Another way of implementing a timer is by using the PLC program-scan
time. Read about this in the next chapter.

12.4.1 EXAMPLE: Using the program scan as timer

The previous pages describe how the built-in function blocks TON and TOF
are used to create a time delay. Another option is to use a program scan to
create a time delay. This is possible because the PLC runs programs in real-
time mode, which means that programs are executed with a specific time
interval.

Below are two program examples, both implemented as shown on the
flowchart below. The program contains a count variable Count, that counts
1 up each time the program is executed. If the scan time is 10 [ms], counting
is perfomed every 10 [ms]. This causes the light to turn on after 200 (10
[ms] * 200 = 2 seconds) program scans, and after 4 seconds the light turns
off. This is a simple way to make a light flash. However, a change in the
scan time will cause the light to flash with a different time interval, and if
the PLC is heavily loaded with tasks, a program scan may be lost.

PROGRAM LampFlash
VAR

Count: INT := 0; //Counter value
Lamp: BOOL; //Connection to the Lamp

END_VAR

//Program example 1 (scan time 10 ms)
Count:= Count + 1; //Count up

IF Count > 200 THEN
Lamp:= TRUE; //Light on

ELSE
Lamp:= FALSE; //Light off

END_IF;

IF Count > 400 THEN
Count:= 0; //Reset counter

END_IF;

//Program example 2 (Scan time 10 ms)
Count:= count + 1; //Count up

Lamp:= Count > 200;

IF Count > 400 THEN
Count:= 0; //Reset counter

END_IF;

12.4.2 EXAMPLE: Function block for Flashing Light

Many machines have a Light Tower to inform the operator about the
operating state of the machine. If one of the lights in the tower needs to
flash, the code must be incorporated in the PLC program. Below find a
function block that can be used to make lights flash.

The function block uses two TON timers. The TON timer defines the time
the light is turned off and on. When one timer ends, the other timer starts.

The input variable Value sets the period of time the light must be off and on
for.

FUNCTION_BLOCK FB_LightFlash
VAR

TimerOn: TON;
TimerOff: TON;

END_VAR
VAR_INPUT

Enable: BOOL; //Running code if TRUE
Value: TIME; // Value for timers

END_VAR
VAR_OUTPUT

Q: BOOL; // Return Value
END_VAR

//FUNCTION BLOCK for a Flashing light

Q := FALSE; //Set FALSE if not enabled

IF Enable THEN
TimerOn(IN:= TimerOff.Q, PT:= Value);
TimerOff(IN:= NOT TimerOn.Q, PT:=Value, Q=>Q);

END_IF;

Below find a solution to test the function block. When the B1 switch is
activated, the red light flashes at one second intervals. When the B2 switch
is activated the yellow light flashes at two second intervals. When the B3 is
activated, the green light remains on.

12.4.3 EXAMPLE FC: Time delay on digital alarms

In many control solutions, it is often required to have a time delay on digital
sensor signals because contact noise from the sensors can result in many
on/off signals. If the sensor is used directly to control a motor, the motor will
start and stop many times, which can damage the motor.

The example below is of a flow switch installed in a pump well. When the
pump well level rises during inflow of water, the flow switch will be
activated (IN signal). However, the water inflow can result in waves which
can result in many on/off signals as illustrated by (1):

If the pump in the well was directly controlled by the IN signal, the pump
will start and stop many times before reaching a state where the pump will
run continuously (3). To solve this problem the pump will need to only start
once and then run for a long period of time (Q signal). This problem is
solved by a function block shown on the next page. The function block adds
a time delay on the input signal before the output is activated:

Sensor IN signal must be stable for a period of time (4) defined by the
variable OnDelaySec before output signal Q is set to TRUE.

The output signal Q is only set to FALSE after the time period (5) defined
by OffDelaySec

The function block also includes the variable AlarmInhibit which can
suppress (not show) the alarm signal. This can be used if any fault or error
arise in the sensor signal.

Program code suggestions:

FUNCTION_BLOCK
AlarmOnOffDelay
VAR_INPUT

IN: BOOL := FALSE;
//Delay on time. Disabled when 0
OnDelaySec: WORD := 0;
//Delay off time. Disabled when 0
OffDelaySec: WORD := 0;
//Q always off

AlarmInhibit: BOOL := FALSE;
END_VAR
VAR_OUTPUT

Q: BOOL; //Out signal
END_VAR
VAR

TimerOn: TON; //Internal timer
TimerOff: TOF; // Internal timer

END_VAR

//Code for FUNCTION BLOCK: AlarmOnOffDelay
//On delay timer
TimerOn(IN:=IN, PT:=WORD_TO_TIME(OnDelaySec*1000));

//Set alarm Out
Q:= TimerOn.Q;

//Special case when OnDelayAlarm is zero (0)
IF (OnDelaySec = 0 AND IN) THEN

Q:= TRUE;
END_IF;

//Off Delay timer
TimerOff(IN:=IN,PT:=WORD_TO_TIME(OffDelaySec*1000));

//Set Alarm out
IF TimerOff.Q AND NOT IN THEN

Q:= TRUE;
END_IF;

//Special case when OnDelayAlarm is zero (0)
IF (OffDelaySec = 0 AND NOT IN) THEN

Q:= FALSE;
END_IF;

//If Alarm Inhibit. Must be the last line
Q:= Q AND NOT AlarmInhibit;

An example using the function block is shown below:

PROGRAM MAIN
VAR

LevelAlarm: AlarmOnOffDelay;
S1: BOOL; //Connect to sensor
K1: BOOL; //Connect to motor

END_VAR

//Set to TRUE if sensor signal is defect
LevelAlarm.AlarmInhibit:= FALSE;

LevelAlarm (IN:= S1, OnDelaySec:= 5, OffDelaySec:= 5, Q=> K1);

The time delay is defined by the variables OnDelaySec and OffDelaySec.
The time is in seconds and the data type is WORD. The
WORD_TO_TIME function converts the value into the time format the
TON and TOF function requires. The value is multiplied by 1000, because
the time format must be in [ms].

12.4.4 EXAMPLE FC: Monitoring of analog values and alarms

This example describes a function block that can be used to monitor an
analog sensor value inside or outside a specified range. If the value is
outside the range, an alarm will be triggered. The alarm should only be
triggered when the sensor value has remained outside of the range for a

certain period of time. The time delay prevents the alarm being triggered if
the value only momentarily goes outside the range.

This function block can e.g. be used to monitor:

A temperature range, to turn on heating at low temperatures.

Large pressure differences on a filter, to alert that the filter
must be cleaned or changed.

The power consumption of a machine. If it is very high its
causes may need to be investigated

The function block is designed to be used for several purposes. The
measurement range is defined by an upper limit (2) LimitH and lower limit
(3) LimitL

If the value measured by an analog sensor (1) is outside the limit range for a
long period of time (5), Q will be TRUE.
If the value is outside the boundary range for only a short period of time (4),
Q will not be TRUE.
An alarm (6) is triggered as soon as the value is outside the range

If the function block is used to monitor a filter with a pressure sensor
mounted each on side of it, the measured value (1) is the difference between
the measured values from sensor B1 and sensor B2.

The filter may be for air or liquids.

The function block shown on the next page uses a TON timer to determine
when Q should be TRUE. The input variable AlarmDelay sets the time on
the TON timer.

In addition, the function block swaps the limit values LimitH and LimitL if
the high limit is the lowest limit. This prevents programming errors.

FUNCTION BLOCK FB_AlarmAnalogValue
VAR_INPUT

LimitH: REAL; //Upper Limit
AnalogValue: REAL; //Value from sensor
LimitL: REAL; //Lower Limit
AlarmDelay: TIME; //Delay before Q = TRUE and

//AnalogValue is outside limits range
END_VAR
VAR_OUTPUT

Q: BOOL; // TRUE if AnalogValue is outside range
END_VAR
VAR

AlarmTimer: TON;
LimitTemp: REAL; //Save limit

END_VAR
//Change limit
IF (LimitL > LimitH) THEN

LimitTemp:= LimitL;
LimitL:= LimitH;
LimitH:= LimitTemp;

END_IF;

//Start timer if AnalogValue is outside limit areas

IF (AnalogValue < LimitL) OR (AnalogValue > LimitH) THEN
AlarmTimer (IN:= TRUE, PT:= AlarmDelay);

ELSE
AlarmTimer (IN:= FALSE); //Reset timer. Value inside range

END_IF;

//Set output value
Q:= AlarmTimer.Q;

Program for testing the function block:

PROGRAM MAIN
VAR

MeasVal: REAL; //Sensor value
AlarmQ: BOOL; //Alarm from the FUNCTION BLOCK
AlarmCheck: FB_AlarmAnalogValue;

END_VAR
//Test code
MeasVal:= 8; //If MeasVal = 2 the AlarmQ variable will be TRUE
after 20 seconds
AlarmCheck (LimitH:=10, AnalogValue:= MeasVal, LimitL:= 4,
AlarmDelay:= T#20S);
AlarmQ:= MeasureAlarm.Q;

12.4.5 EXAMPLE FB: Pulse pause function

In the previous example, page →, the FB_LightFlash function block was
used to make a light flash. The function block can be made more general,

which ensures more code reuse. This can be done by dividing the input
parameter Value into two parameters: PulseSec and PauseSec with the data
type WORD. The data type WORD makes it easier to make calculations. An
example could be to set PulseSec to 25% of PauseSec. When input
parameters are a WORD, the default function WORD_TO_TIME is used to
convert the value to TIME.

Timeline for the function block: The variable name has been chosen by
adding Sec to the name, so it is clear that the unit is seconds.

To keep the number of variables to a minimum, the Value variable is reused
for both TimerOn and TimerOff. A TON timer must have the time in ms
and therefore the value is multiplied by 1000. Below find code for the
function block:

FUNCTION_BLOCK FB_PulsePause
VAR

TimerOn: TON;
TimerOff: TON;
Value: TIME; //Internal conversion value

END_VAR
VAR_INPUT

Enable: BOOL; // Run code if TRUE
PulseSec: WORD; // Value for on signal
PauseSec: WORD; // Value for off signal

END_VAR
VAR_OUTPUT

Q: BOOL; // Return Value
END_VAR

//FUNCTION BLOCK for PulsePause

//Used for Pulse Pause signal

Q := FALSE; //Set to FALSE if not enabled

IF Enable THEN
//Convert and set Off timer
Value:= WORD_TO_TIME (PauseSec * 1000);
TimerOn(IN:= TimerOff.Q, PT:= Value);

//Convert and set On timer
Value:= WORD_TO_TIME (PulseSec * 1000);
TimerOff(IN:= NOT TimerOn.Q, PT:=Value, Q=>Q);

END_IF;

Example of using the function block (as an alternative to chapter 12.4.2,
page 119):

Flash1 (Enable:= B1, PulseSec:= 1, PauseSec:=1, Q=> L1_Red);

The function block can e.g. be used for administering a chemical liquid
where the valve is controlled by Q. PauseSec is the time the chemical needs
to dissolve. By changing PulseSec the administered amount can easily be
changed.

The function block can also be used for Pulse Wide Modulation (PWM) or
pulse train which require a digital output card to be of the high speed type.

12.4.6 EXAMPLE FB: A timer with a pause function

There may be a need to pause a timer for a period of time. With
the function block TONP below, it is possible to pause a TON
timer. The function block works in the same way as the TON
function block, but PAUSE is added as an input parameter. This
means that the timer is put on hold when PAUSE = TRUE and
continues when PAUSE = FALSE.

FUNCTION_BLOCK TONP
VAR_INPUT
IN : BOOL; // Start timer. Must be true when timer is

running
PT : TIME; // Set time. In the format like T#1S, T#10ms
PAUSE : BOOL; // Timer paused when TRUE

END_VAR
VAR_OUTPUT
Q : BOOL; // Timer ended. TRUE when time ended
ET : TIME; // Current time

END_VAR
VAR
PauseOld : BOOL := FALSE; // Handle Oneshot
TimerPause
:

TIME; // Time when paused

Timer : TON; // Internal timer
END_VAR
//The FUNCTION block can be used to pause a TON timer

//Reset timer
IF NOT IN THEN

TimerPause := T#0S;
END_IF

//Stop timer when input parameter PAUSE changes from FALSE to
TRUE
IF PAUSE AND NOT PauseOLD THEN

PauseOld:= TRUE;
TimerPause := TimerPause + Timer.ET; // Save current time

END_IF

Timer (IN := IN AND NOT PAUSE, PT := PT - TimerPause);

//Reset pause TRIG signal
IF NOT PAUSE THEN

Pauseold:= FALSE;
END_IF;

//Set output values
Q := Timer.Q;
ET := TimerPause + Timer.ET;

13 Special functions and program structures

This chapter describes a number of special functions, commonly used
program structures and more complex programs.

13.1 Simple queue structure

This example describes the simplest implementation of a queue. A queue is
used when e.g. there are many packages on a conveyer belt, waiting for
treatment by a machine in a large plant. The packages often require
information like weight, receiver, size or content. Weight gives information
about a package which must be saved in a queue, so that the information can
follow the package through the plant. If the package has a readable bar code,
it is not necessary to implement a queue, as the information about the
package can be accessed from a shared database – i.e. the company’s
production control system, often named:

Manufacturing Execution Systems (MES),
Manufacturing Information Systems (MIS) or
Warehouse Control System (WCS)

When implementing a queue, the objects must not change their place in the
queue. However, if the packages provide e.g. a bar code or any kind of ID the
packages may change their place in the queue.

An ARRAY should be created with the maximum length the queue is
expected to be. Exceeding the required length of the ARRAY will take up
memory unnecessarily and increase the execution time of the program.

A simple example is shown below where an ARRAY with 6 positions of the
data type INT is created. Firstly, all the ARRAY positions are initialized to
-1, because -1 can be used to check whether the position is empty:

PROGRAM MAIN

VAR
Que: ARRAY[QueMin..QueMax] OF INT;
n: INT; //Counter to FOR loop

END_VAR
VAR CONSTANT

QueMax: INT := 5;
QueMin: INT := 0;

END_VAR
FOR n:= QueMin TO QueMax DO

Que[n]:= -1; //Init ARRAY
END_FOR;

The number above the ARRAY shows the position no:

Next: The ARRAY is now filled with three values (23, 35, 71). Values are
inserted into the ARRAY from left to right, so that the value inserted first
(with the value 23), is positioned all the way to the left, and the value inserted
last is positioned all the way to the right on position 2 (with the value 71) as
shown below

Inserting values in the queue can be carried out with this PLC code, where

the ARRAY is named Que:

Que [0] := 23;
Que [1] := 35;
Que [2] := 71;

The oldest value in the queue is 23, and is also the value which is taken out
first. The simplest way to keep control of the queue, is to make sure that the
oldest value is always positioned at position 0.

When the oldest value is taken out, all the values have to be moved one
position to the left. The next value to be taken out is therefore 35.

A FOR loop is used to move all the values one position to the left. The
values are always moved left to not overwrite the values which already exist
in the queue. The FOR loop must be executed one time less than the
maximum positions in the ARRAY (array length), as shown in the example
below:

FOR n:= 0 TO 5 - 1 DO
Que [n]:= Que [n + 1];

END_FOR;

The ARRAY has 6 positions and the values have to be moved 5 times.
Therefore, the FOR loop is executed 5 times as illustrated below:

1. Loop: Que [0]:= Que [0 + 1]
2. Loop: Que [1]:= Que [1 + 1]
3. Loop: Que [2]:= Que [2 + 1]
4. Loop: Que [3]:= Que [3 + 1]
5. Loop: Que [4]:= Que [4 + 1]

To keep track of which position the next value must be inserted at, a variable
must be used called index or pointer. It starts by pointing at position 0,
because the queue is empty. Every time a new value is inserted into the
queue, the pointer is moved one position to the right, and if a value is
removed (taken out) from the queue, the pointer have to be moved one
position left.

The disadvantage of the simple queue is that a lot of time is spend executing
the whole queue to ‘move’/’push’ the values every time a value is taken out.
To solve this problem a circular buffer can be used which uses pointers
instead of moving the values, every time a value is taken out or inserted.

A queue is often called FIFO – meaning First In First Out. The value which
is inserted as the first value has to be taken out first. This is described in the
next chapter.

13.2 FIF0 – First In First Out

The previous chapter described the implementation of a simple queue, where
all values are moved every time a value is removed from the queue. This
chapter describes a queue, where the values ARE NOT MOVED, when a
value is taken out. This makes the PLC code efficient.

An efficient FIFO consists of an array and two pointers. The pointers points
to a position in the array, as shown in the below illustration:

The pointer pOut is pointing at the value which must come out of the queue
first, and the pointer pIn is pointing at the next free position in the queue.
Every time a value is removed from the queue, the pointer pOut is moved
one position to the right. Every time a new value is inserted where the pointer
pIn is pointing, the pointer pIn is moved one position to the right. When a

pointer comes to the end of the array, it will be moved to the beginning of the
array.

A FIFO is also called a circular buffer.

The different PLC types usually offer a FIFO in the built-in software library.
It can be used, but it is often not possible to make changes to it to meet your
requirements (it is often locked with a manufacturer password). Furthermore,
using the built-in FIFO code can limit the possibilities to transfer the
program to another PLC type. The next pages cover an implementation of a
FIFO. The code can be used for learning purposes, and feel free to adjust the
code to meet your requirements.

To limit the number of variables going into the function block, a control
variable, named INOutStatus is used. This variable can have three status
settings:

0 Do nothing inside the function block
1 Insert the value from DataIn into the queue

2 Take out a value from the queue and place it in the DataOut variable.

Two BOOL variables could be used instead of the InOutStatus control
variable, because BOOL variables would be easier to work with in a Ladder
Diagram program.

Below find the variables for the function block:

FUNCTION_BLOCK FIFO
VAR_INPUT
DataIn : REAL; // Insert data into buffer
INOutStatus : INT; // 0 : Do nothing, 1 : Insert data, 2 : Take out

data
END_VAR
VAR_OUTPUT
DataOut : REAL; // Take out data from the buffer

END_VAR
VAR CONSTANT
BufferMax : INT := 5; // Max fixed size of the buffer
BufferMin: INT := 1; // Min fixed size of the buffer

END_VAR
VAR
NoOfDataPoints
:

INT := 0; // Current no. of data points (elements)

// Array including all elements
Buffer: ARRAY[BufferMin..BufferMax] OF REAL;
pIn : INT := 1; //Pointer to first element
pOut : INT := 1; //Pointer to last element

END_VAR

Below find a demo program using the function block. The demo code shows
two values being inserted and one value taken out from the FIFO.

The code below must only be executed once. Use S1 for executing once.

PROGRAM MAIN
VAR

OutData: REAL; //Value from the queue
MyFIFO: FIFO;
S1_Trig : R_TRIG; //One shot for S1
S1 BOOL:= FALSE; //Test button

END_VAR
//Test of the FIFO
S1_Trig (CLK:= S1);
IF S1_Trig.Q THEN

//Insert 71 and 35 into the FIFO
MyFIFO (DataIn:= 71, INOutStatus:= 1);
MyFIFO (DataIn:= 35, INOutStatus:= 1);

//Take out the first inserted value, OutData = 71
MyFIFO (INOutStatus := 2 , DataOut => OutData);

END_IF;

///
//
// FIFO - First In First out
// Can handle up to BufferMax REAL data points
// If more REAL data points are entered, the old ones will be
overwritten
///
//

//Insert data into buffer
IF INOutStatus = 1 THEN

IF pIn <= BufferMax THEN
Buffer[pIn] := DataIn; //Insert

//Increase number of data points
IF NoOfDataPoints < BufferMax THEN

NoOfDataPoints:= NoOfDataPoints + 1;
END_IF
pIn:= pIn + 1; //Set to next element

ELSE // buffer full, insert into first element
pIn:= BufferMin;
Buffer[pIn] := DataIn;
//Move pointer to next element
pIn:= pIn + 1;

END_IF;
END_IF;

//Take out data from the buffer
IF INOutStatus = 2 THEN

IF NoOfDataPoints > 0 THEN //There must be data
Dataout:= Buffer[pOut];

Buffer[pOut] := 0; //Set to 0 to show that the value is removed
NoOfDataPoints:= NoOfDataPoints - 1;
IF pOut < BufferMax THEN

pOut:= pOut + 1;
ELSE

pOut:= BufferMin;
END_IF;

END_IF;
END_IF;

//Is buffer full? Last value is overwritten, move pIn pointer
IF NoOfDataPoints >= BufferMax THEN

pIn := pOut;
END_IF;

13.3 Generating random numbers (RND, Randomize)

This chapter shows how a few lines of code can generate random numbers.
The random numbers can be used for testing a PLC program, where numbers
can e.g. be the weight or the size of parts which must be packed in boxes. In

this way, the PCL program can be tested in the office with many different
numbers – a test which is very close to a test carried out with real parts.

Often no access is given to real production of parts to test the PLC program,
so by simulating the parts with a random number generator, as shown below,
it is possible to test a large amount of PLC code in the office, before the
commission test.

By testing the PLC code in the early phases of development, possible
programming faults and bugs are found and corrected. They are always more
difficult to find later.

The PLC code is written in a function block named RND:

FUNCTION_BLOCK RND
VAR_INPUT
Seed: INT; // Start value, a value below ValueMax
ValueMax: INT; // Max value to be generated

END_VAR
VAR_OUTPUT
ValueRandom: INT; // The returned randomized value

END_VAR
VAR
RandomSeed: DINT := 0; //Start value.

END_VAR

When running the program, the first time around, the ValueMax must be set
to the maximum number to be generated. If ValueMax is set to 12, the return
value NewValue will be a random number between -12 and 12 after each
program execution. When all numbers between -12 and 12 have been
‘drawn’, the process is repeated from the beginning. Note that the numbers
occur in the same order and the distribution is mathematically evenly
distributed throughout the whole interval -12 to 12. Having the same start
value for Seed, numbers appear in the same sequence. Seed can be taken

from the built-in clock in the PLC to ensure different start values and
increased number randomization.

The function block can only return integer numbers. If decimal numbers are
required, the ValueMax variable can be multiplied by 10. Then the
NewValue has to be divided by 10 to get a random decimal number.

///
/////////////////
// This function is a randomize number function
//
// The function generates a different number each time the function is
called
// The seed value set the start value and this can be taken from the PLC
// main clock time to ensure different start numbers
// Refer to: "The C Programming Language," by Kernighan and
Ritchie:
//
// INPUT: Valuemax is the max value (+ / -) of the range
// INPUT: Seed, starts one number below max
// OUTPUT: ValueRandom a number in the range - ValueMin and
ValueMax
IF RandomSeed = 0 THEN //Init

RandomSeed := Seed;
END_IF
RandomSeed := RandomSeed * 1103515245 + 12345;
ValueRandom := DINT_TO_INT((RandomSeed / 65536) MOD
(ValueMax + 1));

The RND function block can be tested by the following:

The variable MyRND is created in the MAIN program, with the data type
RND and a variable NewValue is created to contain the random number.

In the demo code below the ValueMax is set to 12 because it is the maximum
number when using two dice. The RND function block can return zero (0)
which cannot be used when we are using two dice. And because the RND

function block return values between -12 and 12 the ABS function is used to
only have a positive value.

PROGRAM MAIN
VAR

MyRND: RND;
NewValue: INT; //New random value
Dice : INT; //The two dice played
Mytimer: TON; //Timer to have a delay between each play

END_VAR

Mytimer(IN:= NOT Mytimer.Q, PT:=T#5S); //Auto reset timer

IF Mytimer.Q = TRUE THEN // Play the dice when the time is up
MyRND(Seed:= 5, ValueMax:=12, ValueRandom => NewValue);

IF NewValue <> 0 THEN //We don’t like zero
Dice:= ABS (NewValue); //Always use a positive value

END_IF;
END_IF;

13.4 Digital low-pass filter (LP-filter)

This chapter describes the implementation of a digital low-pass filter. This
filter is based on a Low Pass (LP-Filter), consisting of an electronic coil in
serial connection with an electronic capacitor (RC-filter). This filter lets the
low frequencies pass through and remove the high frequencies and can be

used to remove noise signals. On the analogue input module, an LP filter is
normally built-in where it is possible to filter noise and unwanted deflections
from sensors and measuring equipment. Normally, it is not possible to modify
the filter frequency online on an analogue input module. In some plants and
machinery an online change of the filter frequency is required, and to perform
this a digital filter in the PLC program is needed.

The example shown below is a 1st order digital filter. Also called an
exponential filter.

A Fourier transformation (advanced math) is used for transferring the
analogue filter to a digital filter.

There are types of filters for Digital Signal Processing (DSP) on the market,
and the FIR (Finite Impulse Response) is among the most well-known. The
advantage of using a digital filter instead of an average of data such as e.g.
‘moving average’ is that a ‘moving average’ includes all values and uses a
long ARRAY to contain these. A digital filter removes the outlier values and
is fast for a PLC to work with. A function block is used for the
implementation, because the filter must use a value from the previous
program scan and this value is saved in ValueOld.

The filter frequency is adjusted by modifying the filter constant k:

k Curve Description
>

0.01
2 The filter is fast and does not remove a lot of signal.

1 1 The filter is not working (filter turned off).
<

0.01
3 A lot of signal is filtered out (cutoff), and the signal takes a

long time to come into the right signal level.

FUNCTION_BLOCK LP_Filter
VAR_INPUT
ValueRaw : REAL; // Input value
k : REAL; // Filter constant

END_VAR
VAR_OUTPUT
ValueFiltered : REAL; // The filtered output value

END_VAR
VAR
ValueOld : REAL; // Value from last scan

END_VAR

//
//First-order lag filter (LP-Filter)
//
//Versions log
//19.02.2020 TOAN, Created

ValueFiltered := k * ValueRaw + (1 -k) * ValueOld;

ValueOld:= ValueFiltered;

The PLC scan time is the sampling time. In practice, k must be adjusted, so
that signal from the sensor measurements look like the curve which is
wanted.

The graph shows filtered signals at different values by the constant k. See
table on previous page for explanation of the three signal curves.

In the next chapter, find a PLC code example.

13.5 Simulation signals for testing of program code

This chapter describes simulation signals, which can be used during
development and testing of the programming code. The machine or the
hardware panel is often not available, when the PLC code and program needs
to be tested. The hardware has possibly not arrived onsite, the machine is not
built yet, or the PLC equipment is already shipped to the customer.
Therefore, it can be advantageous to be able to simulate ‘sensor’ signals to
verify that the PLC program is working as expected.

Below are programming code examples for four simulation signals, where the
frequency and amplitude can be adjusted to meet your requirements.

The signals can be combined to create new simulation signals like this:

MySignalWave:= TriangleWave + SineWave;

Sine wave

VAR
SineWave: REAL; //Wave signal
n: REAL; //Counter
a: REAL:= 1; //Amplitude
hz: REAL := 0.001; //Hz

END_VAR
n:= n + hz;

SineWave:= SIN (n);

Triangle wave

VAR
n: REAL; //Counter
a: REAL:= 1; //Amplitude
hz: REAL:= 0.001; //Hz
TriangleWave: REAL; //Wave signal
Length : REAL := 2; //Length on/off signal

END_VAR

n:= n + hz;
TriangleWave:= a + n;
IF n > Length THEN

n:= 0;
END_IF;

Square wave

VAR
n: REAL; //Counter
a: REAL:= 1; //Amplitude
hz: REAL:= 0.001; //Hz
SquareWave: REAL; //Wavesignal
Length : REAL := 2; //Length on/off signal

END_VAR
n:= n + hz;
SquareWave:= 0;

IF n > Length/2 THEN //50% duty cycle
SquareWave:= a;

END_IF;

IF n > Length THEN
n:= 0;

END_IF;

Square wave (filtered)

VAR
n: REAL; //Counter
a: REAL:= 1; //Amplitude
hz: REAL:= 0.001; //Hz
SquareWave: REAL; //Wave signal
Length : REAL := 2; //Length on/off signal
Filter : LP_Filter; //Filter Function block *)
FSquareWave: REAL; //Wave signal filtered

END_VAR
n:= n + hz;
SquareWave:= 0;

IF n > Length/2 THEN //50% duty cycle
SquareWave:= a;

END_IF;

IF n > Length THEN
n:= 0;

END_IF;

//Filter signal
Filter(ValueRaw:= SquareWave,

k:= 0.01,
ValueFiltered => FSquareWave);

*) Description of the filter function block, see chapter 13.4, page →.

13.6 Conveyor belt with sequence control

This example describes a conveyor belt control program where the program
sequence control is designed following the EN60848 standard.

The example consists of a start switch S1, a conveyor belt controlled by a
motor M1 and a sensor at each end of the conveyor belt:

Control Description:
The conveyor belt starts moving to the right when an item is placed at sensor
B1 and the start switch S1 is activated. When the item reaches sensor B2, the
conveyor belt stops for 10 seconds. Then the item is pushed back to the left.
The conveyor belt stops when the item reaches B1 again. The motor is
controlled by two digital signals: K1 to start or stop, and K2 to control the
direction of movement (right or left).

The sequence diagram is shown to the right. There are four states in the
sequence which are referred to as 0, 10, 20 and 30. These are the four states
the program can be divided into.

The start state is 0. When S1 and B1 are both TRUE, the program changes to
state 10.

The state is changed from state 10 to state 20 when the item activates sensor
B2.

The item waits for 10 seconds in state 20, after which the state is changed to
30, where the item is returned to start.

The entire sequence stops when the item activates sensor B1 again.

The program is shown on the next page and consists of one main program
and two program modules.

In the program a CASE statement is used for the sequencer control code,
because this gives a good program structure.

PROGRAM ConveyorMain
VAR

S1 : BOOL; //Start switch (NO – Normally Open contact)
B1 : BOOL; //Belt sensor at start (NO – Normally Open contact)
B2 : BOOL; //Belt sensor at end (NO – Normally Open contact)
K1 : BOOL := FALSE; //M1, Motor run, 1=run, 0=Stop
K2 : BOOL := FALSE; //M1, Motor direction, 1=Right, 0=Left
Seq : INT := 0; //Sequence no
B2Delay : TON; //Delay timer at B2 sensor point

END_VAR
//Program code for ConveyorMain
ConveyorSeq();

ConveyorSetOutPut();

//ACTION ConveyorSeq – set sequence number
CASE Seq OF
0 : IF (S1 AND B1) THEN //Start

Seq:= 10; //Set to next sequence
END_IF;

10 : IF B2 THEN //At the end point
Seq:= 20; //Set to next sequence
END_IF;

20 : B2Delay (IN:= NOT B2Delay.Q, PT:= T#10S); //10 seconds delay
//Auto reset of the timer ensures it is ready for next start
IF S2Delay.Q THEN //Delay ended
Seq:= 30; //Set to next sequence
END_IF;

30 : IF B1 THEN //Item is back at the beginning
Seq:= 0; //Set to next sequence
END_IF;

END_CASE;

//ACTION ConveyorSetOutPut – check the Seq variable and set digital
outputs
CASE Seq OF

0 : K1:= FALSE; //Stop motor
10 : K1:= TRUE; //Start motor

K2:= TRUE; // Set conveyor belt to move right
20 : K1:= FALSE; //Stop motor
30 : K1:= TRUE; //Start motor

K2:= FALSE; //Set conveyor to move left
END_CASE;

The variable Seq handles the program state and a CASE statement is used
because this provides a good program structure for a sequencer.

The program module ConveyorSeq sets the variable Seq to the correct
state, based on the current state and the input signals: S1, B1 and B2.

The ConveyourSetOutPut program module ensures that the two digital
outputs (K1, K2), that controls the motor, are correctly set based on the state
of the program.

The program on the page with the sequence control of a conveyor belt only
has one start switch S1. However, there must be a manual stop switch to stop
the conveyor belt if needed. When a conveyor belt stops the program
execution, consider the following: Should the item remain on the conveyor
belt after it stops, or should the item be returned to the starting point? The
choice depends largely on the machine type or plant, because it can be
expensive to simply discard items that are on the conveyor belt.

For user operation in this example, these four manual switches are used:

The program is split up into four program sequences which correspond to the
switches:

In normal program execution (automatic operation), S1 must be activated
once.

When activating one of the switches S2, S3 or S4, each of the states 110, 120
or 130 have their own unique situation which needs to be handled: The
conveyor belt is stopped, the sequence is stopped, or the sequence number is
reset. In these cases the ConveyorSeq program will not be executed.

The program code is found on the next page where the the main sequence is
controlled by the MainSeq variable. The SeqSaved variable is used to save
the sequence number when S2 is activated to pause (put on hold) the
ConveyorSeq program. Furthermore, the timer in B2Delay is changed from
the default timer TON to TONP, because it is not possible to pause a TON
timer. TONP is found on page →.

PROGRAM ConveyorMain
VAR

S1 : BOOL; //Start switch (NO – Normally Open contact)
S2 : BOOL; //Pause switch (NO – Normally Open contact)
S3 : BOOL; //Stop and return switch (NC – Normally Closed
contact)
S4 : BOOL; //Stop switch (NC – Normally Closed contact)
B1 : BOOL; //Belt sensor at start position (NO – Normally Open
contact)
B2 : BOOL; //Belt sensor at end position (NO – Normally Open
contact)
K1 : BOOL := FALSE; //M1, Motor run, 1=run, 0=Stop
K2 : BOOL := FALSE; //M1, Motor direction, 1=Right, 0=Left
Seq, SeqMain, SeqSaved : INT := 0; //Sequence no
B2Delay : TONP; //Delay timer with pause function

END_VAR
//Program code for ConveyorMain
MainSeqSelect();
MainSeqEXE();

//ACTION MainSeqSelect
//Handles the switches and sets the required main sequence number

IF NOT S2 AND S3 AND S4 THEN //Not pause or stop activated. B4
and B3 is NC

MainSeq:= 100; //Normally run
END_IF;

IF S2 THEN //Pause switch activated
MainSeq:= 110;

END_IF;

IF NOT S3 THEN //Stop and return item to start, NC switch
MainSeq:= 120;

END_IF;

IF NOT S4 THEN //Stop, NC switch (must important and therefore
placed last)

MainSeq:= 130;
END_IF;

//ACTION MainSeqEXE

ConveyorSetOutPut(); //has to be executed first, because output can be
overwritten

CASE MainSeq OF
100: ConveyorSeq();

B2Delay(PAUSE:= FALSE); //Restarts pause. Use TONP
function block

110: SeqSaved:= Seq; //Saves the Seq number
Seq:= 0; //Set to stop M1 motor
ConveyorSetOutPut(); //Executes to stop M1 motor
Seq:=SeqSaved; //Reloads the Seq number
B2Delay(PAUSE:= TRUE); //Pause. Use TONP function block

120: Seq := 30; //Sequence that returns to start position
130: Seq:= 0; //Set to stop M1 motor

END_CASE;

13.7 Pump control with two pumps

This example describes a pump control with two pumps and three float
switches in a well. The float switches are attached to cables and when the
liquid rises in the well, the float switches will be activated and change their
NC / NO position.

The two submersible pumps M1 and M2 have been set to alternate operation
mode, which means that they take turns to start and run. With alternating
operation, the length of time the pumps are operating is distributed across
both pumps, and servicing of the pumps can be performed at the same time.

Signals from the float switces LS1, LS2 and LS3 determine when the pumps
should start or stop. If the level in the well is between LS1 and LS2, one
pump must be running.

If the level is above LS3, both pumps must be running to pump at full
capacity. LS3 is a Normally Closed (NC) switch to provide overflow
protection when both pumps are operating, if the LS3 wire is disconnected or
the flow switch is defect. If the level is below LS1, both pumps must be
stopped to avoid dry run.

Float switches are connected to digital inputs and the pumps to digital
outputs. The following variables are used:

VAR
LS1: BOOL; //Float Switch (NO), placed bottom
LS2: BOOL; //Float Switch (NO), placed middle
LS3: BOOL; //Float Switch (NC), placed top
M1: BOOL := FALSE; //Pump 1
M2: BOOL := FALSE; //Pump 2
RunM: BOOL := FALSE; //Control the alternation
END_VAR

With alternating operation the pumps must take turns to start and run. To
select which pump to start, the variable RunM is used. If RunM is TRUE,
pump M1 will start and if RunM is FALSE, pump M2 will start. The
variable RunM selects which of the two pumps that must be turned off when
the level is below float switch LS3.

The pump variables M1 and M2 are by default set to FALSE when the PLC
powers up, to ensure that the pumps are not running during startup.

The program code is split up into four states defined by the float switches, the
number of pumps in operation, and an increased or decreased liquid level:

//Low level (1)
//Stops pumps if LS1 is not activated
IF NOT LS1 THEN

M1:= FALSE;
M2:= FALSE;

END_IF;

//LS2 is activated, start one pump (2)
IF LS2 AND NOT M1 AND NOT M2 THEN

M1:= RunM;
M2:= NOT RunM;
//Pump alternation
RunM:= NOT RunM;

END_IF;

//Start both pumps, high level in tank (3)
//LS3 = NC
IF NOT LS3 THEN

M1:= TRUE;
M2:= TRUE;

END_IF;

//Stop one pump, because two are running (4)
//Level is below LS2, LS3=NC
IF NOT LS2 AND M1 AND M2 THEN

M1:= RunM;
M2:= NOT RunM;
//Pump alternation
RunM:= NOT RunM;

END_IF;

The state changes when a float switch is activated or deactivated.

The IF statements in state 2 and 4 ensures that the code is executed once
only, because the number of running pumps prevents the code to be executed
again.

Alarm monitoring for float switch errors:
This code can be implemented to monitor potential float switch errors:

//Defect LS2 or LS3 float switch: Because LS3 is activated and LS2 is
not activated.
LS2_3_Alarm:= LS2 OR NOT LS3; //LS3 = NC, LS2 = NO

//Defect LS1 or LS2 float switch: Because LS2 is activated and LS1 is
not activated.
LS1_2_Alarm:= NOT LS1 OR LS2; //LS1 = NO, LS2 = NO

13.8 Pump control with sequence control

The program code from the previous page can be difficult to troubleshoot,
debug or extend. The program structure can be improved following the
EN60848 sequence control standard (sequencer).

To design the program structure for the sequencer, it is important to
understand how the control solution works. In this control solution, the liquid
level inside the tank is the most important factor. The liquid level activates
the float switches, and this determines the pump operation:

The float switches determine the state of the program and is visualized in the
sequence diagram below:

The program changes from state 0 to 10 when LS1 is activated by the liquid
level inside the tank. In state 10 both pumps stop.

When the program is in state 10, and LS2 is activated by the liquid level, the
state is changed to 20 where one of the two pumps has to run.

In state 20, there are two options:
LS3 is activated when the liquid level is very high in the tank, and the
state is changed to 30. Or
LS1 is activated when the level in the tank has become so low, that the
pump must stop.

The tank is full in state 30 and both pumps must be running. If the liquid
level is below LS2, the state must be changed to 20.

To avoid unnecessary start/stop of the pumps caused by waves in the tank,
two float switches must be activated before a pump is stopped.

The program is split up into three programs. The SeqSelect program checks
the signals from the float switches and sets the program state. The
SeqOutput program starts and stops the pumps depending on the state.

When the program enters state 20, only one of the two pumps should run.
The purpose of the SeqOld variable is to check, if the pump is entering step
20 for the first time. If it is the first time, the pump which did not run the last
time is started.

PROGRAM MAIN
VAR

LS1: BOOL; //Float Switch (NO) bottom, Stop both pumps

LS2: BOOL; //Float Switch (NO) middle, Run M1 or M2
LS3: BOOL; //= FALSE; //Float Switch (NC) top, run both pumps
M1: BOOL:= FALSE; //Pump 1
M2: BOOL:= FALSE; //Pump 2
Seq: INT := STEP_0; //Current sequence number
SeqOld: INT; //Old sequence number
RunM: BOOL; //Controlling the alternation

END_VAR
VAR CONSTANT

STEP_0: INT := 0; //Sequence for standby
STEP_10: INT := 10;
STEP_20: INT := 20;
STEP_30: INT := 30; //Sequence for tank is full

END_VAR
//Main Program
SeqSelect(); //Check float Switches and set Sequence
SeqOutput(); //Set the output signals

Tank with pumps and float switches

//ACTION SeqSelect

//Save current seq, to handle alternation between pumps
SeqOld:= Seq;

CASE Seq OF
STEP_0 : //Standby, no liquid in tank

IF LS1 THEN
Seq:= STEP_10;

END_IF;
STEP_10 :

IF LS2 THEN //Level => higher
Seq:= STEP_20;

END_IF;
STEP_20 : //Tank half full

IF NOT LS1 THEN //Level => lower
Seq:= STEP_10;

END_IF;

IF NOT LS3 THEN //Level => higher
Seq:= STEP_30;

END_IF;
STEP_30 : //Tank is full

IF NOT LS2 THEN //Level => lower
Seq:= STEP_20;

END_IF;
END_CASE;

//ACTION SeqOutPut

//Set output variables

CASE Seq OF
STEP_10 : //Turn pumps off

M1:= FALSE;
M2:= FALSE;

STEP_20 : //Run one pump

//Alternate between pumps
//Change pump if first time run
IF Seq <> SeqOld THEN

RunM:= NOT RunM;

END_IF;

//Turn pumps on or off
M1:=RunM;
M2:= NOT RunM;

STEP_30 : //Tank full
//Turn both pumps on
M1:= TRUE;
M2:= TRUE;

END_CASE;

13.9 Automatically and manually operated pump control

The program code from chapter 13.7, page →, only works for automatically
operated pump controls, where flow switches determines whether the pumps
should be on or off. However, during servicing and testing the operator needs
to be able to turn pumps on and off manually. The example below shows how
the program can be split up into automatic and manual operations.

The Main program (PRG) consists of the following program code and
variables:
Main (PRG)
//Program code for MAIN PROGRAM MAIN
IF SwitchAuto AND SwitchOn THEN VAR

PRGPumpAuto(); SwitchM1: BOOL; //Manual switch on/off for Motor 1
END_IF; SwitchM2: BOOL; //Manual switch on/off for Motor 2

SwitchAuto: BOOL; //Switch for automatic or manuel
IF NOT SwitchAuto AND SwitchOn THEN SwitchOn: BOOL; //Power switch on or off

PRGPumpMan(); LS1: BOOL; //Float Switch (NO) button, stop pumps
END_IF; LS2: BOOL; //Float Switch (NO) mid, run M1 or M2

LS3: BOOL; //Float Switch (NC) top, run both pumps
IF NOT SwitchOn THEN M1: BOOL:= FALSE; //Pump 1

PRGPumpOff(); M2: BOOL:= FALSE; //Pump 2
END_IF; RunM: BOOL:= FALSE; //Controls the alternation

END_VAR

The Main program (PRG) consists of the following program code and
variables:

PRGPumpAuto PRGPumpMan PRGPumpOff
//Manual pump on or off M1:= SwitchM1; M2:=
SwitchM2;

//Set pumps to off M1:= FALSE; M2:=
FALSE;

See page →

The user can set the pump control to automatic or manual operation via a
control panel (HMI) as shown to the right.

In automatic operation mode, the PRGPumpAuto program will run. If
manual operation is selected, the PRGPumpMan allows the operator to turn
the pumps on or off individually using SwitchM1 or SwitchM2. The position
of SwitchOn determines whether the PRGPumpOff program is running or
not.

By splitting the program code into ACTIONs, a good program structure is
obtained. The example shown is just one of several options for a sensible
program split.

13.10 Calculating tank volume, cylinder on hemisphere

This chapter shows an implementation of a volume calculation for a large
storage tank.

The tank consists of a cylinder with a hemisphere in the bottom.

Formulas for calculation of volume are found on the internet.

A function is created where the size tank size are input values, so that the
PLC code can be reused for tanks of other sizes. Furthermore, the liquid level
is input parameter to the function and the return value is the current volume.
The liquid level is measured by an analogue sensor. It can be a pressure
sensor in the bottom of the tank, measuring the liquid level or a sensor at the
top measuring from the top downwards to the liquid level. The content of the
tank is often the main factor to determine which sensor technology should be
used. In this solution example, the level is measured from the bottom of the
tank up to the liquid surface.

The first aim of this task is to make the tank measurement succeed. Only
when the hemisphere is filled, the liquid starts filling the cylinder. The
measurements must be checked by a tank calculator found on the internet.

The calculation is carried out without units to make a more flexible solution,
which can be reused. This means that all units must be the same. Units can be
measured in meter, ft, cm or mm. The volume becomes cubic: m3, ft3, cm3 or
mm3.

Next, the calculation of the hemisphere must work, and the whole solution
must finally be implemented, so that a total test can be made. It is an
advantage to document the test in a document to prove that the function has
been tested. For the test to be valid, a range of test points must be selected,
which must include points outside the range of the tank, at different liquid
levels in the tank and close to the interfaces, i.e. where the cylinder and the
hemisphere meet. The expected volume is calculated at different levels. It can
be made by a calculator or through one of many online pages, where it is
possible to make volume calculations on tanks. Finally, the function is tested
and the test result is compared with the expected results. (see chapter 16.3,
page →).

Below is shown a suggestion for the PLC code:

FUNCTION TankVolumenCal : REAL
VAR_INPUT

TankDiameter: REAL; // Fixed tank diameter
TankHeight: REAL; // Fixed tank height of cylinder
LevelFromBottom: REAL; // Current level measured

END_VAR

VAR CONSTANT
PI: REAL := 3.1415;

END_VAR
VAR

Level: REAL; // Internal calculation
Vol: REAL:= 0; // Internal calculation
Lr: REAL; // Level radius in circle
TankRadius: REAL;

END_VAR

The program is split up in different clear sections as shown on the next page.
In the first two lines the internal variables are initialized. Next, the
calculation sections are carried out, where each section provides a comment
line for information, and finally the return value for the function is set.

A program ‘call’ for the function could be as follows:

Vol:= TankVolumenCal (TankDiameter:= 2,
TankHeight:= 6,
LevelFromBotton:= LevelSensor);

Or like this, because it is a FUNCTION:

Vol1:= TankVolumenCal (2, 6, LevelSensor);

Where LevelSensor is the current tank measurement from the bottom.

All values must have the same unit (m, mm, cm, feet, ft).

///
// Tank Volume calculator - Cylinder with a hemisphere
///
Level:= LevelFromBottom;
TankRadius:= TankDiameter/2;

//Check level depth - level cannot be negative
IF Level < 0 THEN

Level:= 0;
END_IF;

//Check level height - tank cannot be overfilled
IF Level > (TankRadius + TankHeight) THEN

Level:= TankRadius + TankHeight;
END_IF

//Hemisphere
IF Level <= TankRadius THEN

// Hemisphere partially filled (1)
Lr:= SQRT(Level * (TankDiameter - Level));
Vol:= (PI/6)*level*(3*Lr*Lr+ Level*Level);

ELSE
// Hemisphere filled (2)
Vol:= 2.0/3.0*PI * TankRadius * TankRadius * TankRadius;

END_IF;

//Something in the cylinder? (3)
IF Level > TankRadius THEN

Vol:= Vol + (Level - TankRadius) * PI * TankRadius * TankRadius;
END_IF;

//Set return value
TankVolumenCal:= Vol;

13.11 PLC control for pumping well station with 6 pumps

This example contains an example of a program structure used for a pump
well station with 6 pumps. The number of pumps in operation depends on the
liquid level inside the well. When the well is full, all pumps must run in order
to operate with the highest possible pump capacity.

The pumps are running in alternating operation mode.

Alternating operation mode means:

1) The pump with the lowest accumulated operating time must start when
higher liquid leves require additional pumping

2) The pump with the longest accumulated operating time stops when the
liquid level becomes lower

3) After a certain period of time, the pump with the longest accumulated
operating time stops, and the pump with lowest accumulated operating
time starts.

Pump well with 6 pumps.

The level inside the well is measured by a pressure sensor mounted to the
bottom of the well. The pressure sensor is an analog sensor signal.

A pump can be switched off by an alarm or manually when service mode.
However, these operations are not included in the programming example.

Incorporating alternating operation means that over time the pumps are used
for the same amount of time, and ensures that all pumps require maintenance
and service at the same time. This reduces overall downtime.

The example can also be used to control e.g. compressor systems,
refrigeration plants, power plants or buffer tanks.

When designing the program, principles of Object Oriented Programming
(OOP) and the ISA-S88 standard has been incorporated, which means that
code for the pumps is collected in a structure which can be reused.

The solution therefore consists of a pumping station using 6 identical pump
objects:

For a pump all variables are collected in a STRUCT named PumpType:

TYPE PumpType :
STRUCT
RunState : PumpState := PumpState.STOP;
RunTotalMinutes : DWORD := 0;
RunLastStartSec: WORD := 0;
RunSeconds: WORD := 0; //Count up to 60
RunTimerSeconds: TON; //Count up RunSeconds
END_STRUCT

END_TYPE

In practice, there will be more variables than shown in this example. This
could be alarms, power consumption, speed, etc.

Each pump can have different operating modes defined in an ENUM:

TYPE PumpState :
(STOP, RUN, ALARM, SERVICE) := STOP;

END_TYPE

The pumps are declared using an ARRAY and used by the pumping station:

TYPE PumpStation :
STRUCT
PumpsAr: ARRAY [1..PSCont.MAX_PUMPS] OF PumpType;
NoPumpsRun: INT; //Number of running pumps
Level: WORD; //Water level in the well
END_STRUCT

END_TYPE

The pump station also consists of a level sensor and number of pumps in
operation.

The ARRAY includes a global constant PSConst for maximum number of
pumps. This ensures that the constant can easily be changed and used
throughout the program:

TYPE PSConst
VAR_GLOBAL CONSTANT

MAX_PUMPS : BYTE := 6;
END_VAR

The program consists of a main program and 8 functions as shown below:

A block diagram provides a good overview of the program structure. If there
are many lines and the block diagram is difficult to draw, it may indicate a

bad program structure.

The Main program uses four functions, and FC_StopPump is reused twice.
Each function has a maximum of 20-25 program code lines, which is a sign
of a good program structure. Functions are used because all variables are
stored in a STRUCT named PumpStation. Using functions make it is easier
to change the program structure later on compared to programs split up into
ACTIONS, because ACTIONS always “interconnect” with a program
module to exchange variables. Changes to the program structure is often
required when adding new features, or when the program needs to be
redesigned to redistribute the load on the CPU.

The function FC_NoOfRunPumps is not called from FC_UpdateCounters
because the two functions do not require the same scan time.
FC_UpdateCounters must be called in each program scan because it uses a
TON timer, and FC_NoOfRunPumps only needs to be called e.g. every
second scan time. In the event of later changes to the program, it is therefore
better that the functions runs individually.

The following pages cover a proposal for the program code.

PROGRAM MAIN
VAR

PumpWell : PumpStation; //One pumpstation contains all pumps
END_VAR

//Update counters
FC_UpdateCounters(PumpWell.PumpsAr);

//Pump alternating time is 3600 seconds = Hour. Can be change to a
lower time when testing
FC_AlternatePump(PumpWell, 3600);

//Update no. of pump runs
PumpWell.NoPumpsRun:=
FC_NoOfRunPumps(PumpWell.PumpsAr);

//Find the required pumps to run depending on the level in the pump
well

FC_LevelCtrl(751, 1000, 6, PumpWell); //Max level in the pump well
station is 1000
FC_LevelCtrl(601, 750, 5, PumpWell);
FC_LevelCtrl(451, 600, 4, PumpWell);
FC_LevelCtrl(301, 450, 3, PumpWell);
FC_LevelCtrl(151, 300, 2, PumpWell);
FC_LevelCtrl(100, 150, 1, PumpWell);
FC_LevelCtrl(0, 99, 0, PumpWell); //To prevent dry runs no pumps
must run at a level below level 99

Note that the Main program has one variable only. This variable is used
when calling functions to ensure that the functions can use and change
variables.

The maximum liquid level in the pump well station is 1000, and the number
of pumps to run at a specified level is determined by the function
FC_LevelCtrl.

FUNCTION FC_NoOfRunPumps : INT
VAR_IN_OUT

Pumps: ARRAY[1..PSCont.MAX_PUMPS] OF PumpType;
END_VAR
VAR

i: INT; //Loop
No: INT := 0; //Counter

END_VAR
//Count number of running pumps
FOR i:= 1 TO PSCont.MAX_PUMPS DO

IF Pumps[i].RunState = PumpState.RUN THEN
No:= No + 1;

END_IF;
END_FOR;

//Set return value
FC_NoOfRunPumps:= No;

FUNCTION FC_FindAndStopPump : BOOL

VAR_IN_OUT
Pumps: ARRAY[1..PSCont.MAX_PUMPS] OF PumpType;

END_VAR
VAR

i: INT; RunTime: DWORD; PumpIndex: INT;
END_VAR
//Set an initial low time to find the highest run time
RunTime:= 0;
PumpIndex:= 0;

//Find the pump in RUN state with the longest accumulated run time
FOR i:= 1 TO PSCont.MAX_PUMPS DO

IF RunTime < Pumps[i].RunTotalMinuttes AND Pumps[i].RunState
= PumpState.RUN THEN

RunTime:= Pumps[i].RunTotalMinuttes;
PumpIndex:= i;

END_IF;
END_FOR;

//Stop the pump
IF PumpIndex > 0 AND PumpIndex <= PSCont.MAX_PUMPS THEN

FC_StopPump (Pumps[PumpIndex]);
END_IF;

FUNCTION FC_FindAndStartPump : BOOL
VAR_IN_OUT

Pumps: ARRAY[1..PSCont.MAX_PUMPS] OF PumpType;
END_VAR
VAR

i: INT; RunTime: DWORD; PumpIndex: INT;
END_VAR
RunTime:= 9999999; //Set an initial high time to find a low run time
PumpIndex:= 1;

//Find a pump in STOP state with the lowest run time
FOR i:= 1 TO PSCont.MAX_PUMPS DO

IF RunTime > Pumps[i].RunTotalMinuttes AND Pumps[i].RunState
= PumpState.STOP THEN

RunTime:= Pumps[i].RunTotalMinuttes;
PumpIndex:= i;

END_IF;
END_FOR;

//Start Pump
FC_StartPump(Pumps[PumpIndex]);

FUNCTION FC_StartPump : BOOL
VAR_IN_OUT

PumpObj: PumpType;
END_VAR

//Start Pump
PumpObj.RunState:= PumpState.RUN;

FUNCTION FC_StopPump : BOOL
VAR_IN_OUT

Pump: PumpType;
END_VAR
//Pump will stop after 30 sec delay to avoid unnecessary start/stop
IF Pump.RunLastStartSec > 30 THEN

Pump.RunState:= PumpState.STOP;
Pump.RunLastStartSec:= 0;

END_IF;

FUNCTION FC_UpdateCounters : BOOL
VAR_IN_OUT

Pumps: ARRAY[1..PSCont.MAX_PUMPS] OF PumpType;
END_VAR
VAR

i: INT; //Loop counter
END_VAR
FOR i:= 1 TO PSCont.MAX_PUMPS DO

Pumps[i].RunTimerSeconds(IN:= NOT
Pumps[i].RunTimerSeconds.Q, PT:= T#1S); //Auto reset

//Only update when the pump is in RUN state
IF Pumps[i].RunState = PumpState.RUN THEN

//Second timer ended?
IF Pumps[i].RunTimerSeconds.Q THEN

Pumps[i].RunSeconds := Pumps[i].RunSeconds + 1;
Pumps[i].RunLastStartSec:= Pumps[i].RunLastStartSec + 1;

//Update minutes
IF Pumps[i].RunSeconds >= 60 THEN

Pumps[i].RunTotalMinutes:= Pumps[i].RunTotalMinutes + 1;
Pumps[i].RunSeconds:= 0;

END_IF;

END_IF; //Second timer end
END_IF;

END_FOR;

FUNCTION FC_LevelCtrl : BOOL
VAR_INPUT

LevelLow: WORD; //Liquid level in pump well station must be
above this level
LevelHigh: WORD; // Liquid level in pump well station must be
below this level
NoPumpsReq: INT; //Number of pumps required to run in the liquid
level range

END_VAR
VAR_IN_OUT

PumpWell : PumpStation; //Address pointer to the STRUCT outside
the function

END_VAR
VAR

PumpCtrl: INT := 0;
END_VAR

//This function starts or stops a pump depending on the level in the
pump well station

//Check level. Does a pump need to be started due to a high liquid
level?
IF (PumpWell.Level >= LevelLow) AND (PumpWell.Level <=
LevelHigh) THEN

IF NoPumpsReq > PumpWell.NoPumpsRun THEN
//Negative if one more pump is needed
PumpCtrl:= NoPumpsReq - PumpWell.NoPumpsRun ;

END_IF;
END_IF;

//Check level. Does a pump need to be stopped due to a low liquid
level?
IF (FC_LevelCtrl = 0) AND (PumpCtrl = 0) THEN

IF (PumpWell.Level >= LevelLow) AND (PumpWell.Level <=
LevelHigh) THEN

IF NoPumpsReq < Pit.NoPumpsRun THEN
//Positive if a pump has to be stopped
PumpCtrl:= NoPumpsReq - PumpWell.NoPumpsRun;

END_IF;
END_IF;

END_IF;

//If a pump needs to be stopped, stop the pump
IF PumpCtrl < 0 THEN

FC_FindAndStopPump(Pumps:= Pit.PumpsAr);
END_IF;

//If a pump needs to be started, start the pump
IF PumpCtrl > 0 THEN

FC_FindAndStartPump(Pumps:= PumpWell.PumpsAr);

END_IF;

FUNCTION FC_AlternatePump : BOOL
VAR_IN_OUT

PumpWell: PumpStation; //Address pointer to the STRUCT outside
the function

END_VAR
VAR_INPUT

AlternationTimeSec: DWORD; //The time a pump has to run before
alternating

END_VAR
VAR

i: INT; //Counter for LOOP
END_VAR

//Function for alternating between pumps. Time until pump alternation
is in AlternationTimeSec

//Only alternate between pumps if at least one, but not all pumps are
running
IF PumpWell.NoPumpsRun > 0 THEN

IF PumpWell.NoPumpsRun < PSCont.MAX_PUMPS THEN
//Check all pumps
FOR i:= 1 TO PSCont.MAX_PUMPS DO

IF (AlternationTimeSec <
PumpWell.PumpsAr[i].RunLastStartSec) THEN

IF PumpWell.PumpsAr[i].RunState = PumpState.RUN
THEN

//First stop the pump that has been running for the longest
time
FC_StopPump(PumpWell.PumpsAr[i]);
//Then start another pump
FC_FindAndStartPump(PumpWell.PumpsAr);

END_IF;
END_IF;

EXIT; //Only alternate to one pump. Another pump will be
checked in next scan

END_FOR;
END_IF;
END_IF;

13.12 EXAMPLE: Heating of liquid in a tank

This example shows a tank control, which can heat liquid.

Control Description:

When switch S1 is activated, valve V1 opens and liquid fills the tank. When
the liquid reaches the requested level, valve V1 closes. Then valve V3 opens
and heats up the liquid. When the liquid inside the tank reaches the requested
temperature, valve V2 opens to empty the tank.

A mixer M1 ensures stirring during the heating process.

Description of the used components and their mode of operation:
Name I/O Component Mode of operation:
S1 DI Start switch Activating the start switch will start the tank control program sequence. Only starts when the tank is

empty.
TT1 AI Sensor Temperature Transmitter. Measures temperature in the tank. Measuring range is 0 to 100 degrees. 4-20

mA signal. Connected to an analog input module. Range is 0 to 65335
PT1 AI Sensor Pressure transmitter. Measuring pressure. Measures liquid level inside the tank Measuring range is 0 to 2

meters. 4-20 mA signal Connected to analog input module. Range is 0 to 65335
V1 DO Valve Signal from PLC opens the valve, and the tank fills up with liquid. No signal closes the valve

automatically
V2 DO Valve Signal from PLC opens valve and the liquid leaves the tank.
V3 DO Valve Signal from PLC opens the valve and hot water is circulated in a spiral tube inside the tank. This causes

the liquid inside the tank to heat up. The mixer has to run during this operation
M1 DO Mixer /

Stirrer
Powered by a motor with a frequency converter. The mixer speed is set directly on the frequency
converter. Do not turn on the mixer when the tank is empty, as this will cause the mixer to overheat.
Controlled by a digital signal from the PLC

The three valves V1, V2 and V3 close automatically when they no signals
(24V).

Design and structure of the PLC program

To ensure a good program structure, the program is designed according to the
EN60848 standard, which describes how a program can be designed
sequentially. This means that the program is controlled by states (sequences).

Referring to the control description (previous page), this control has four
states:

Wait until the start switch S1 is activated
Fill up the tank with liquid
Heat the liquid inside the tank
Empty the tank

The program design and structure is documented with a sequence diagram
following the EN60848 standard:

The first state is 0, where the control waits for the start switch S1 to be
activated.

When S1 is activated, the state is set to 10, where valve V1 is open and the
tank will be filled up with liquid.

When the tank has the requested amount of liquid, the state is set to 20. The
requested amount of liquid is obtained when the measured tank volume is
greater than the user defined value set by the SetVolume variable.

Step 20 is the heating process. V3 must be open and the mixer turned on.

A temperature sensor continuously measures the temperature inside the tank.
The progress to step 30 occurs when the temperature is higher than the
temperature set by the user.

In step 30 the tank is emptied. When the tank is empty, change to step 0 to
restart the control system.

Next follows the program design, where the control is split up into seperate
functions and program modules.

The program structure has one program module which handles the input
signals, and one program module which handles the output signals. This
ensures a good and clear program structure. Program modules have been
chosen instead of functions, because the code inside the program modules is
unlikely to be reused and program tests are more difficult to carry out, if
variable sensors are created inside a function.

In addition, a program module ensures that values are written correctly to the
HMI. In the program example below, the remaining values for the HMI
comes from the Main program.

The program is split up as shown in the block diagram below:

The SetSequence program module uses two functions: Scale (see more 92)
and TankVolumeCal (see more page →). The Scale function is used to scale
the analog input signals (temperature sensor and level sensor), as the value
from an analog input module can often not be used directly.

Each sequence state number is declared as a CONSTANT because they are
used multiple times in the program code.

The user control panel (HMI) shows the sequence state number, so a service
technician can easily see the current sequence state number of the program.

The following pages contains a proposal for the program code.

PROGRAM MAIN
VAR

Seq: WORD := STEP_0_START;
END_VAR
VAR
SetTankDiameter: WORD := 1; //User settings
SetTemperature: WORD := 45; // User settings
SetVolume: WORD := 1; // User settings
SetTankHeight: WORD := 2; // User settings

END_VAR
VAR CONSTANT
STEP_30_EMPTY : WORD := 30; //Sequence number
STEP_20_HEAT : WORD := 20; //Sequence number
STEP_10_FILL : WORD := 10; //Sequence number
STEP_0_START : WORD := 0; //Sequence number

END_VAR
//Main Program
SetSequence(TemperatureRequest:= SetTemperature,

VolumeRequest:= SetVolume, //M3 volume
TankDiameter:= SetTankDiameter,
TankHeight:= SetTankHeight,
Seq:=Seq);

UpdateHMI (Seq:= Seq);
SetOutPut (Seq:= Seq);

PROGRAM UpdateHMI
VAR_INPUT

Seq: WORD;
END_VAR
VAR

SegStr: STRING;
HMISeqStr: STRING; //String to HMI

END_VAR
//Update information to HMI
//Create the string to HMI
HMISeqStr:= CONCAT('$22 Sequens no. $22 ', WORD_TO_STRING
(Seq)); // Where $22 is "
HMISeqStr:= CONCAT(HMISeqStr, ' ');

//Show right text depend of the step
CASE Seq OF

MAIN.STEP_0_START : HMISeqStr:= CONCAT(HMISeqStr,
'Ready to Start');

MAIN.STEP_10_FILL : HMISeqStr:= CONCAT(HMISeqStr,
'Filling Tank');

MAIN.STEP_20_HEAT : HMISeqStr:= CONCAT(HMISeqStr,
'Heat and mixing Tank');

MAIN.STEP_30_EMPTY : HMISeqStr:= CONCAT(HMISeqStr,
'Empty Tank');

END_CASE

PROGRAM SetSequence

VAR
S1 : BOOL; //Manual start button. Value from INPUT

module
TT1 : WORD; //Temperature sensor. Value from INPUT

module
PT1 : WORD; //Pressure sensor. Value from INPUT module
Vol: REAL; //Internal calculation

END_VAR
VAR_INPUT
TemperatureRequest: REAL;
VolumeRequest: REAL;
TankDiameter: REAL;
TankHeight: REAL;

END_VAR
VAR_IN_OUT
Seq: WORD;

END_VAR

//Always calculate to avoid long lines of code
Vol:= TankVolumenCal(TankDiameter,TankHeight, Scale(PT1, 0,
65535, 0, 2));

CASE Seq OF

MAIN.STEP_0_START : IF S1 THEN //Only allow to use S1 in step
0
Seq:= MAIN.STEP_10_FILL;

END_IF;
MAIN.STEP_10_FILL : IF Vol > VolumeRequest THEN

Seq:= MAIN.STEP_20_HEAT;
END_IF;

MAIN.STEP_20_HEAT : IF Scale(TT1, 0, 65535, 0, 100) >
TemperatureRequest THEN
Seq := MAIN.STEP_30_EMPTY;

END_IF;
MAIN.STEP_30_EMPTY : IF (Vol < 0.001) THEN //In case the

REAL calculation is not zero
Seq:= MAIN.STEP_0_START;

END_IF;
END_CASE;

PROGRAM SetOutPut
VAR_INPUT

Seq: WORD;
END_VAR
VAR

M1: BOOL; //Mixer
V1 : BOOL; //Valve to fill
V2 : BOOL; //Valve to empty
V3 : BOOL; //Valve to heat

END_VAR
//PROGRAM SetOutPut
//Reset all output. CASE Sets the correct output value
M1:= FALSE; V1:= FALSE; V2:= FALSE; V3:= FALSE;

CASE Seq OF

MAIN.STEP_10_FILL : V1:= TRUE; //Fill
MAIN.STEP_20_HEAT : M1:= TRUE; //Mixer

V3:= TRUE; //Heat
MAIN.STEP_30_EMPTY : V2:= TRUE; //Empty

END_CASE;

13.13 EXAMPLE: FC Toggle switch (two-way switch)

This example shows a function block that can be used as a Toggle Switch. A
Toggle Switch changes status each time the switch is activated, and can be
used as a start and stop switch for an electrical component (eg motor, fan or
light).

The advantage of a Toggle Switch is that you only need to use one switch,
instead of using a switch for on and a switch for off.

To the right, a time diagram is shown. The signal from the switch is CLK and
the component to be switched off or on must be connected to Q. CLK_OLD
is an internal variable used as a OneShot and ensures that there is only one
change in Q status, every time CLK is activated.

The example is based on the do-it-yourself implementation of the Oneshot,
(see page →), which ensures that the solution can be used in all types of
PLCs:

FUNCTION_BLOCK FBToggle
VAR_INPUT

CLK: BOOL; // Input signal
END_VAR
VAR

// Remember previous signal on CLK
CLK_OLD: BOOL := FALSE;

END_VAR
VAR_OUTPUT

Q: BOOL; // Output

END_VAR

Change of status is made at #2, where Q is set to the inverted value of Q.

//Code for FUNCTION BLOCK: Toogle
//When CLK is moves from FALSE to TRUE
//Q will be TRUE if FALSE or FALSE if TRUE

//Detect the rising edge on the input signal
IF CLK AND NOT CLK_OLD THEN

CLK_OLD:= TRUE; //#1
Q:= NOT Q; //#2

END_IF;

//Reset the rising edge detection
IF NOT CLK THEN

CLK_OLD:= FALSE;
END_IF;

Program example:

PROGRAM MAIN
VAR

MyToogle: FBToggle;
K1: BOOL := FALSE;
S1: BOOL; //Contact switch

END_VAR
//Example program:
MyToogle (CLK:= S1, Q=> K1);

13.14 EXAMPLE: 3D car park controlled by a robot

This chapter shows an example of a PLC program used to handle cars inside
a car park.

When the car is inserted into the car park house by the robot, the program has
to first find a vacant space to ensure the robot knows where to place the car.

When the car is picked up by the car driver, the car must first be located by
the program, so the robot knows where to pick up the car from.

Due to the fact that a car license plate is unique, it is used as the identifier,
and as it contains numbers and letters it is set to a STRING data type in the
PLC program. The length of the STRING is limited to 15 characters to save
memory in the program. The constant for this is named STR15.

It is possible to insert, find or remove cars from the parking house. To reuse
as much of the program code as possible, only one function named
CarHandle is implemented which takes one of the following parameters:
CAR_INSERT, CAR_FIND or CAR_DEL.

A location inside the 3D parking house consists of x, y and z coordinates and
therefore a STRUCT named Pos is declared because this gives a clear
structure to the code.

TYPE Pos :
STRUCT

x: INT;
y: INT;
z: INT;

END_STRUCT
END_TYPE

VAR_GLOBAL CONSTANT
STR15 : INT:= 15; //Car number
CAR_INSERT : INT := 1;
CAR_FIND : INT:= 2;
CAR_DEL : INT:= 3;

END_VAR

VAR_GLOBAL CONSTANT

X_MAX: WORD := 2;
Y_MAX: WORD := 3;
Z_MAX: WORD := 4;

END_VAR

Below see how the CarHandle function can be used:

PROGRAM Main
VAR

MyPos: Pos; //Location inside the car park house
ArCarPark: ARRAY[1.. GVL.X_MAX, 1.. GVL.Y_MAX, 1..
GVL.Z_MAX] OF STRING[GVL.STR15];

END_VAR
// REMEMBER TO run the code only once!
ArCarPark [1,3,1]:= 'YD 12345'; //Insert car directly into the 3D Array
CarHandle ('YD 12345', GVL.CAR_FIND, ArCarPark, MyPos);
//MyPos.x = 1, MyPos.y =3, MyPos.z = 1
CarHandle ('AB 12345', GVL.CAR_INSERT, ArCarPark, MyPos);
CarHandle ('AB 12345', GVL.CAR_DEL, ArCarPark, MyPos);

FUNCTION CarHandle : BOOL

VAR_INPUT
CarStr: STRING; //Number plate for the car
Handle: INT; // What action to take? CAR_FIND, CAR_DEL or

CAR_INSERT
END_VAR
VAR_IN_OUT
arPark: ARRAY[*, *, *] OF STRING [GVL.STR15]; //Pointer to 3D

ARRAY
CarP: Pos; // Location of the car
END_VAR
VAR
Loop, Found : Pos; //Working STRUCT
Ctrl: BOOL := FALSE; //Control the operation inside this function.
If FALSE an error occur

END_VAR
//Copy ARRAY sizes to local variables to maintain readable program
code for the LOOPs

Loop.x:= DINT_TO_INT (UPPER_BOUND (arPark, 1)); //Size 1D
Loop.y:= DINT_TO_INT (UPPER_BOUND (arPark, 2)); //Size 2D
Loop.z:= DINT_TO_INT (UPPER_BOUND (arPark, 3)); //Size 3D

//LOOP through all locations in the 3D car park house
FOR CarP.x:= 1 TO Loop.x DO

FOR CarP.y := 1 TO Loop.y DO
FOR CarP.z:= 1 TO Loop.z DO

//Condition only passes when no action has been taken
IF Ctrl = FALSE THEN

IF FIND (ArPark [CarP.x, CarP.y, CarP.z], CarStr) > 0 THEN
CASE Handle OF

GVL.CAR_FIND : Found:= CarP; //Copy coordinates
where the car was located
GVL.CAR_DEL : ArPark [CarP.x, CarP.y, CarP.z]:= '';
//Set STRING to empty

END_CASE
Ctrl:= TRUE; //done

END_IF;

//Insert the car at the first free location in the parking house
IF Handle = GVL.CAR_INSERT AND ArPark [CarP.x, CarP.y,
CarP.z] = '' THEN

ArPark [CarP.x, CarP.y, CarP.z]:= CarStr; //Insert
Ctrl:= TRUE; //done

END_IF;
END_IF;

END_FOR; //z
END_FOR; //y
END_FOR; //x

//Set return values (copy x, y, z coordinates inside STRUCT) and error
code
CarP:= Found;
CarHandle := Ctrl;

13.15 EXAMPLE: Configurable car wash control

This example describes a program design for a car wash, where it is possible
to configure the washing programs via a user panel (HMI) as shown below:

The aim of this program structure is to enable the owner of the car wash to
change the washing program him/herself according to the season, without
using a PLC programmer to change the program code. It may be necessary to
change the washing programs due to the seasonal changes between the
summer and winter period. The owner can also change, name or add washing
program him/herself.

Each car washing program consists of a number of washing sequences (a
recipe), and each washing sequence is configured by numbers and a
semicolon. The numbers in the washing sequence refer directly to the
programs the PLC executes to run a complete program. The washing

sequences are executed in the order it is configured, first 1, then 10 and then
20, etc. Here is a list of selected car washing sequences which can be used to
configure a complete car wash program:

Number Program name Mode of operating
0 - Standby. Idle mode. No program to execute
1 WaterOn(); Water open. Move swing arm forward and

backward
10 SoapStandard(); Standard soap. Move swing arm forward

and backward
11 SoapBudget(); Budget soap. Move swing arm forward and

backward
20 Brushing(); Using brushes. Move swing arm forward

and backward
22 UnderCarWash(); Washing under the car. Only use water
23 WheelWash(); Wheel brushing. Use soap. Use water
24 NumberPlateWash(); Number plate washing. Front and back
30 Drying(); Drying. Moving swing arm forward and

backward.
99 Stop(); Close water tap. Move swing arm to start

position. Stop program.

More washing sequences can easily be added, and it is possible to execute the
same washing sequence more than once, or reuse it in other washing
programs.

When designing the program, there are several ways to ensure a good
program structure. Various solutions are discussed below:

Function (FC)

A function cannot be used solely, because the washing program must
use a timer (TON) to handle how long a washing sequence needs be
carried out.

A timer can de declared and used as a global shared timer, but this is
not good program structure as it does not create the function as an
independent program, which is the purpose of a function.

Function Block (FB)

Could be used. However, there are many IO signals in a car wash and
therefore many variables to handle in each function block. A STRUCT
could be used to handle the many variables, however, as the overall
program of the car wash is a small program, using FUNCTION
BLOCKs can too complex.
A function block can handle the timers needed for washing timers.

Program(PRG)

Could be used. But all IO variables must be made global, which does
not provide a good program structure.

The Program (PRG) can share variables with other Program (PRG)
directly, but it does not provide a good program structure, because all
variables are then "horizontally" shared between the program modules
as shown on the diagram to the left.

ACTION

The best solution. An ACTION only contains program code and no
variables.

All shared variables and IO signals from sensors, valves and motors
are declared in the Program (PRG) which allows the variables to be
used by the ACTION.

The Program (PRG) can include a shared timer for managing wash
times.

To ensure a good program structure, all variables for a wash sequence are
collected in a STRUCT, as shown below:

TYPE CarWashType:
STRUCT
ProgramName : STRING; //Can be a name like ‘Standard

Wash’
ProgramNumbers
:

STRING; // A sequence such as ’1;10;22;24’

Cost : REAL := 0; //Cost off a wash
NoRuns : DWORD :=

0;
//Number of washes

END_STRUCT
END_TYPE

When all the variables are collected in a STRUCT, only one ARRAY needs
to be declared, which can contain all the desired washing programs.
The declared ARRAY must be marked with RETAIN so all the washing
programs, the user has created are saved when restarting the PLC.
To make the program test fast and easy, three washing programs are created:

//ACTION ConfigWashPrograms
//Config demo wash programs
ArCarWash [1].ProgramName := 'Budget Wash';
ArCarWash [1].ProgramNumbers := '1;11;20;';
ArCarWash [1].Cost:= 10;

ArCarWash [2].ProgramName := 'Standard Wash';
ArCarWash [2].ProgramNumbers := '1;10;20;30';
ArCarWash [2].Cost:= 15;

ArCarWash [3].ProgramName := 'Gold Wash';
ArCarWash [3].ProgramNumbers := '1;20;10;20;21;24;23;30';
ArCarWash [3].Cost:= 30;

Note: This program code can be optimized by using a function. See more in
chaper 11.5, page →.

The program code can be found on the next page, where demo washing
program 3 is used. This is the ‘Gold Wash’.
Activating S1_Start starts the program. After starting the program, the first
number in the washing program sequence is found by using the
GetProgramNo function (se see more in chapter 11.4, page →). The first
program in the sequence is WaterOn();

The CASE statement uses the number found to execute the washing program.
Before a washing program is completed, CarWashRun must count one up.
When CarWashRun has added one to the counter, the GetProgramNo is
called again to find the next washing program number. The loop stops when
GetProgramNo returns 0 which indicates no number found, or when the user
activates S2_Stop.

PROGRAM MAIN

VAR RETAIN
ArCarWash: ARRAY[1..5] OF CarWashType; //The

configuration of washing programs
END_VAR
VAR
S1_StartOneShot: R_TRIG; //Oneshot for start button
CarWashSeq: INT := 0; //Current program found in the

STRING: ‘1,10,20…’
S1_Start: BOOL; //Start button
CarWashPrg: INT; //The user selected washing program to run
CarWashRunOld: INT := 0; //The previous index number of

ProgramNumber
CarWashRun: INT; //Index number of ProgramNumber. Start

with 1, then 2, then 3…
S2_Stop: BOOL; //A stop button
PrgTimer: TON; //A timer shared between all programs.

Can be used as wash timer
END_VAR

S1_StartOneShot(IN:= S1_Start); //Press for start

IF S1_StartOneShot.Q AND CarWashRun = 0 THEN //Start new
washing program

CarWashPrg:= 3; //User has selected washing program number 3
CarWashRun:= 1; //Run the first program wash sequence
ConfigWashPrograms(); //Predefined washing programs for demo
and test purposes

END_IF;

IF CarWashRun <> CarWashRunOld THEN //Get new wash program
sequence number

CarWashSeq:=GetProgramNo (CarWashRun,
ArCarWash[CarWashPrg].ProgramNumbers);

CarWashRunOld:= CarWashRun; //Update previous so any change
can be noted

END_IF;

IF S2_Stop THEN CarWashSeq:= 99; END_IF; // Stop button
activated

CASE CarWashSeq OF
//Add one to CarWashRun when a program ends
0 : CarWashRun:= 0; CarWashRunOld:= 0; //No more sequences to
run
1 : WaterOn();
10 : SoapStandard();
11 : SoapBudget();
20 : Brushing();
21 : WheelWash ();
22 : UnderCarWash();
23 : WheelWash();
24 : NumberPlateWash();
30 : Drying();
99 : Stop();

ELSE
CarWashSeq:= CarWashSeq *-1; //Error program number not
found

END_CASE;

13.16 EXAMPLE: Adapt pump speed to save energy

This example describes the design of a PLC program where the speed of a
pump is adjusted to keep it running at the most optimal speed. A pump will
usually be most efficient when running at 100% speed (maximum capacity),
but wear and tear on the pump hose, and changes in fluid form (velocity) will
influence the pumps ability to stay at the most optimal speed. Therefore, to
save energy the PLC program needs to check whether the speed of the pump
is at the most optimal and change it if this is not the case.

The example consists of the following components:

Flow meter (1) measuring the amount of liquid running through a tube.
Pump (3) with a motor and frequency converter (4).

The components connected to the PLC are shown below:

Component overview and mode of operation:

No Signal Component
1 Flow Meter. Liquid velocity measurement in [m3/h]
2 4-20

mA
Signal cable from flow meter to AI (Analog Input) on the PLC

3 Pump run by a motor
4 Frequency converter for controlling the speed of the motor
5 Digital DO (Digital Output) from PC to start and stop the motor
6 4-20

mA
Power measurement [kW] of the motor energy consumption.
Connected to AI (Analog Input) on the PLC

7 4-20
mA

Motor Speed Control. Percent signal, 0 to 100%

8 Digital Manual switch S1. Starts the measuring period

In order to find the most optimal speed for the pump, a number of flow and
power measurements is carried out at different pump speeds.

For each measurement:
(A) Set a frequency converter speed and start the pump if the pump has
not already started. It is possible to change the speed directly without
stopping and starting the pump.

(B) After a period of time, the flow measurement (curve C) is stable.
At point (B) measure the flow (curve C) and the power [w] (curve D).

The time between point (A) and point (B) is in seconds, and is found by
testing the solution in practice, because the measurements is affected by the

pump size, the tube diameter and the reaction time of the flow.

The program code example does not detect when the flow is stable. In this
program code example, a fixed time at point (B) is used. To improve the
measured result, averages of measurement points could be calculated or a
digital filter used.

The function block is named DataCollect. The function block uses a timer to
set the time interval from (A) to (B). It is important to call the function block
in each program scan, because the function block uses a timer.

The flow and power signals are input values to the function block. When the
output variable Done is TRUE, data is ready in the ValueResult variable.
Thereafter, the frequency converter can be set to a new speed and a new
measurement period starts.

The calculation of ValueResult is carried out by dividing the power
consumption of the pump with the Flow (the amount of liquid) (see # 1 in the
programming code).

Using a metaphor, the calculation can be explained by:

Power is the price you pay, and Flow is what you get.

FUNCTION_BLOCK DataCollect

VAR_INPUT
Enabled: BOOL:= FALSE; // Start on positive trig
Flow: REAL; // Flow [m3/h]
Power: REAL; // Power [w]

END_VAR
VAR_OUTPUT
ValueResult: REAL; // Calculated result
Done: BOOL:= FALSE; // When TRUE ValueResult is

ready
END_VAR
VAR
EnableOneShot: R_TRIG;
StateTimer: TON; // Delay time before data is ready

END_VAR
//FUNCTION BLOCK for DataCollect
EnableOneShot (CLK:= Enabled);

//Start new data collect period. Can be restarted at any time
IF EnableOneShot.Q THEN

ValueResult:= 1000; //Show high value if Flow <= 0
Done:= FALSE;
StateTimer (IN:= FALSE); //Reset timer

END_IF;

//Start delay timer, Period A..B
StateTimer (IN:= TRUE, PT:= T#10S);

//Timer end, collect value
IF StateTimer.Q THEN

IF Flow > 0 THEN //Avoid division by zero
ValueResult:= Power/Flow; //#1

END_IF;

Done:= TRUE;
END_IF;

PROGRAM MAIN
VAR
DI_S1: BOOL := FALSE; // (8) Start DataCollect
S1_OneShot: R_TRIG;
AO_MotorSpeed: INT; // (7) Current speed
MyDataCollect: DataCollect; //FUNCTION BLOCK
AI_Flow: REAL; // (1) Flow measure
AI_Power: REAL; // (6) Power measure
DO_MotorStart: BOOL; // (5) on/off for the motor
LowValueFound: REAL;
LowSpeedFound: REAL;

END_VAR
VAR CONSTANT
SPEED_START: INT := 85; // Motor run speed at start
SPEED_END: INT := 100; // Motor run speed at end

END_VAR
S1_OneShot (CLK:= DI_S1);

IF S1_OneShot.Q THEN //Begin
AO_MotorSpeed:= SPEED_START;
DO_MotorStart:= TRUE; //Start Motor
LowValueFound:= 10000; //Init high value

END_IF;

//Loop all values of Speed
IF AO_MotorSpeed >= SPEED_START AND AO_MotorSpeed <
SPEED_END THEN

MyDataCollect (Enabled:= TRUE, Flow:= AI_Flow, Power:=
AI_Power);

//Data collect done
IF MyDataCollect.Done THEN

AO_MotorSpeed:= AO_MotorSpeed + 1;//Set to next speed value
MyDataCollect (Enabled:= FALSE);//End data collection

//Save found value, if it is a lower than the old one #2)
IF LowValueFound > MyDataCollect.ValueResult THEN

LowValueFound:= MyDataCollect.ValueResult;
LowSpeedFound:= AO_MotorSpeed; //Save current speed

END_IF;
END_IF;

ELSE //End of loop
AO_MotorSpeed:= LowSpeedFound; //Set optimal speed

END_IF;

The function block uses the Enable input variable to start the measurement
period. The EnableOneShot variable ensures that initialization of the
variables is only performed when a new period starts.

In the MAIN program DI_S1 starts a new series of measurements. All
measurements are done without using the FOR-DO statement, because the
function block has a timer that must be called at each program scan. The
FOR-DO statement does not provide this kind of feature.

The loop starts at the minimum speed defined by the constant
SPEED_START.The loop counter variable, AO_MotorSpeed is used and
the measurements loop stops when AO_MotorSpeed is at the same speed as
SPEED_END.

After each measurement period the new value is compared (see # 2 in the
code) with the previous value. If the new value is lower than the previous
value, the new value is saved in the LowValueFound variable. At the same
time the speed is saved in Low-SpeedFound.

In the diagram, the lowest value is found at point (F). At this point the lowest
cost per flow rate is found which is therefore the most optimal operating

point for the pump. The speed at the point (E) is the value in the variable
LowSpeedFound, and this is the value to set the frequency converter at.

13.17 PLC control of Robot and CNC machine

This example shows a solution where items are processed in a CNC machine.

The plant consists of a table with items, a robot, a CNC machine, a light
tower and a start switch:

Control Description:

When the operator has pressed S1, the plant is in operation mode. This
means:

1. The robot moves an item from the table to the CNC machine.

2. The CNC machine processes the item.

3. The robot moves the item back to the table.

4. When point 1 to 4 have been repeated 25 times, the job is done.

System design

It is important to decide whether it is the program in the robot controller or
PLC that is responsible for ensuring that all 25 items are processed in the
CNC machine. If the responsibility is placed with the robot controller, the
robot controller must control the CNC machine directly, because the CNC
machine has to notify the robot controller when it is ready for a new item. If
the responsibility is placed with the PLC, the PLC controls both the robot and
the CNC machine, which in many cases is a simpler design compared to a
system with shared responsibility between the CNC and PLC.

To control the process, an ARRAY with 25 elements is declared:

VAR
arTable: ARRAY[1..TableX, 1..TableY] OF BOOL;

END_VAR

VAR CONSTANT
TableX: INT := 5;
TableY: INT := 5;

END_VAR

The first step in the program sets all elements in the ARRAY to FALSE.
When an item is moved to the CNC machine, the element is set to TRUE, to
ensure the item is not selected again.

The robot gets a message from the PLC containing the position of the item to
pick up. The message is sent via Fieldbus. The position is the contents of the
variables Take_x and Take_y, multiplied by 120 [mm], because the robot
uses the distance from the Home position to where the item has to be picked
up.

Because it is the PLC that decides which item the robot has to pick up, the
PLC must also ensure that all 25 items are processed by the CNC machine.

Components and how they work:
Name I/O Component How do they work
S1 DI Switch The plant is in operation mode when pressing the switch
M1 Robot Move items to and from CNC machine.
M1_P1 DO Robot TRUE when the robot starts robot program 1, where an item is moved from the table to the CNC

machine.
M1_P2 DO Robot TRUE when the robot starts robot program 2, where an item is moved from the CNC machine back

to the table.
M1_Done DI Robot TRUE when the robot program is completed.
M2 Machine CNC machine to process items (drill holes in the item).
M1_P2 DO Machine At signal (TRUE), CNC machine starts program 1. The machine takes the item supplied by the robot

and processes it. Finally, signal is given on M2_done
M2_Done DI Machine TRUE when the item can be removed from the CNC machine.
TableX Table X position on table with items.
TableY Table Y position on table with items.
L1 DO Blue light Light turned on when the plant is in operation mode.
L2 DO Green light Light turned on when the plant is ready for 25 new items.

The program is split into one main program and three ACTIONs:

TableReset resets the ARRAY when starting a new table. GetNextItem gets
the position of the next item from the ARRAY. All variables are created in
the Main program and variables are shared with all three ACTIONs.

To obtain better program structure, TableReset and GetNextItem can be
created as a function. If GetNextItem is a function, the two variables Take_x
and Take_y must be grouped in a STRUCT so that the function can return
the variables as a group.

If sequence programming (EN 60848) is used, Main and Operate will
provide a better program structure, as the machine only processes one item at
a time.

Main (PRG)

//Manual push button activated
IF S1 AND L2 THEN

TableReset(); //Table full with items
L2:= FALSE; //Turn off the task done lamp
L1:= TRUE; //Turn on the operating lamp
RunAll:= TRUE; //Set to run for all items
RunOne := FALSE; //Set to run for one item

END_IF;

//Take next item from the table
IF RunAll AND NOT RunOne THEN

GetNextItem();
END_IF;

//If there are no more items, then stop
IF (Take_x = 0 AND Take_y = 0) THEN

RunAll:= FALSE;
L2:= TRUE; //Signal operation completed
L1:= FALSE; //Turn off operating light

END_IF;

//One item is in operating mode
IF RunAll THEN

Operate();
END_IF;

ACTION: Operate

//NOTE: Send Take_x and Take_y position to the
// robot before executing the code below

//Signal to Robot: Move one item
M1_P1:= TRUE; //Start robot program 1
RunOne:= TRUE; //One item in progress

//Robot task done, start CNC
IF M1_Done AND M1_P1 THEN

M1_P1:= FALSE;
M2_P1:= TRUE;

END_IF;

//CNC task done, move item back to table
IF M2_Done THEN

M2_P1:= FALSE;
M1_P2:= TRUE; //Start robot program 2

END_IF;

//Robot task done,
IF M1_Done AND M1_P2 THEN

M1_P2:= FALSE;
RunOne:= FALSE; //Stop item in progress

END_IF;

ACTION: TableReset

//New table
//Reset all elements in the ARRAY
//Set to FALSE indicates that the item
//is ready to be moved
FOR X := 1 TO TableX DO

FOR Y := 1 TO TableY DO

arTable[X, Y]:= FALSE;
END_FOR;

END_FOR;

ACTION: GetNextItem

//Find the next item to be moved from the table

//Reset next item position to zero
Take_x:= 0; Take_y:= 0;
Found := FALSE; //None found

//Loop all items
//Get the last item

FOR X := 1 TO TableX DO //All x positions
FOR Y := 1 TO TableY DO //All y positions

IF NOT arTable[X, Y] AND NOT Found THEN
Take_x:= X; //Save x position
Take_y:= Y; //Save y position
arTable[X, Y] := TRUE; //set as item to pickup
Found:= TRUE; //A item is taken

END_IF;
END_FOR; //y loop

END_FOR; //x loop

14 From Ladder Diagram to ST-programming

This chapter contains a range of examples, comparing Ladder Diagram
(LD) programming code with the corresponding ST programming code.

This chapter is meant to support the readers who understand LD
programming well, or need to translate a LD program to ST. There are
currently no tools available which are able to convert a LD program into an
ST program, which is why the following examples have become part of this
book:

Example 1: Input (contact) and output signal (coil)

//Solution 1A
K1:= S1;

//Solution 1B
IF S1 = TRUE THEN

K1:= TRUE;
ELSE

K1:= FALSE;
END_IF;

Example 2: Invert the inputsignal (Negation)

//Solution 2A
K2:= NOT S2;

//Solution 2B
IF S2 = FALSE THEN

K2:= TRUE;
ELSE

K2:= FALSE;
END_IF;

Example 3: Input signal with one shot

Example 3A: Input signal with R_TRIG

//Solution 3
VAR

S1_TRIG: R_TRIG;
END_VAR
S1_TRIG (CLK:= S1);
IF S1_TRIG.Q = TRUE THEN

K1:= TRUE;
ELSE

K1:= FALSE;
END_IF;

Example 4: Latching relay / self hold relay

//Solution 4A
K1:= (K1 OR S2) AND S3;

//Solution 4B
IF ((K1 OR S2) AND S3) THEN

K1:= TRUE;
ELSE

K1:= FALSE;
END_IF;

Example 5: SET and RESET

//Solution 5
IF S1 = TRUE THEN K1:= TRUE;

END_IF;

IF S2 = TRUE THEN
K1:= FALSE;

END_IF;

Example 6: Timer

//Solution 6
MyTimer (IN:= S1, PT:= T#3S);
K1:= MyTimer.Q;

Example 7: Timer with automatic restart

//Solution 7
t2 (IN:= NOT t2.Q, PT:= T#100ms);
K1:= t2.Q;

Example 8: More inputs and outputs

//Solution 8
IF (S1 AND (S2 OR NOT B1)) THEN

K1:= TRUE;
K2:= FALSE;

ELSE
K1:= FALSE;
K2:= TRUE;

END_IF;

Example 9: Compare values

//Solution 9A
K1:= S10 >= 12.2;

//Solution 9B
IF S10 >= 12.2 THEN

K1:= TRUE;
ELSE

K1:= FALSE;
END_IF;

Example 10: Variable assignment (Move value to a variable)

//Solution 10A
IF (S1 = TRUE AND S2 = FALSE) THEN

K2:= 123;
END_IF;

//Solution 10B

IF S1 AND NOT S2 THEN
K2:= 123;

END_IF;

Example 11: Counter using the CTU function block

//Solution 11
MyCounter (CU:= S1, RESET:= S2, PV:= 5);
K1:= MyCounter.Q;

Example 12: Calculations

//Solution 12A
V1:= 10 + 12;
V2:= V1 * 17;
V3:= V2 – 23;
V4:= V3 / 5;

//Solution 12B
V4:= (((10 + 12) * 17) – 23) / 5);

Example 13: LIMIT function (value inside range 10 to 40)

//Solution 13
v2:= v1;
IF v2 < 10 THEN

v2:= 10;
END_IF;

IF v2 > 40 THEN
v2:= 40;

END_IF;

Example 14: Compare values

//Solution 14A
K1:= FALSE;
K2:= FALSE;
IF State = 10 THEN

K1:= TRUE;
END_IF;

IF State = 20 THEN
K2:= TRUE;

END_IF;

//Solution 14B
K1:= FALSE;
K2:= FALSE;

CASE State OF

10: K1:= TRUE;
20: K2:= TRUE;

END_CASE;

Example 15: Counter

//Solution 15
i:= i + 1; //Counter

Example 16: Trafic light

//Solution 16A
L1Red:= FALSE;
L2Yellow:= FALSE;
L3Green:= FALSE;

//Using case
CASE SecCount OF

0 .. 29 : L1Red:= TRUE;
30 .. 34 : L2Yellow:= TRUE;
35 .. 64 : L3Green:= TRUE;

END_CASE;

//Solution 16B
L1Red:= (SecCount >= 0) AND (SecCount <= 29);
L2Yellow:= (SecCount >= 30) AND (SecCount <= 34);
L3Green:= (SecCount >= 35) AND (SecCount <= 64);

//Solution 16C
L1Red:= FALSE;
L2Yellow:= FALSE;
L3Green:= FALSE;

IF (SecCount >= 0) AND (SecCount <= 29) THEN
L1Red:= TRUE;

END_IF;

IF (SecCount >= 30) AND (SecCount <= 34) THEN
L1Yellow:= TRUE;

END_IF;

IF (SecCount >= 35) AND (SecCount <= 64) THEN
L1Green:= TRUE;

END_IF;

15 Best Practice ST-programming

ST-programming enables programmers to use his/her own syntax.
Therefore, good programming practice has to be followed to increase the
readability of the entire program. Capital and lower case letters in
conjunction with tabulation and indentation (placing of <SPACE>) in the
program code can improve the readability of the program.

It is important to be consistent with your programming, so that other readers
and programmers can easily read it.

The following sections cover recommendations:

15.1 Tabulation of text and placing of SPACE

Tabulation of the text is important for code inside IF and CASE statements
and FOR loops. The best solution is to place 2 x <SPACE> for tabulation,
because <TAB> depends on the setup in the PLC developing tool. If the
PLC code must later be copied to another PLC, the best solution is also to
use 2 x <SPACE>.

Tabulation increases the readability of the PLC code. The PLC code can be
difficult to read without tabulation of the text or by using wrong tabulation.
Therefore, be consistent with your tabulation throughout the entire program.

<SPACE> has no function in ST programming (the PLC ignores white
space). To improve readability of the code place one <SPACE> between
commands, variables, statements, brackets and values. It is, however,
recommended not to place <SPACE> before semicolon.

15.2 Empty lines between code

It makes sense to create empty lines in the PLC code to separate and split
up the different code pieces into smaller sections.

It is recommended to have a maximum of two empty lines between code
sections.

Furthermore, do not place code lines on the same line as an ELSE-
statement, and do not write code lines longer than the screen width.

15.3 Avoid spaghetti code

The spaghetti code is a definition for PLC code possessing a complex
structure which occurs with unclear naming of variables and functions,
many GOTOs, JMPs, EXITs or other unstructured implementations.

It is only recommended to use GOTO and JMP statements in very special
situations (e.g. for fault finding, testing and debugging). The use of EXIT
can also cause spaghetti code. It is, therefore, recommended to avoid the
EXIT command and use other conditional statements such as IF and
CASE. On the other hand, EXIT can be useful, when fault finding is
carried out in the PLC code. Care must, however, be taken when the PLC
code is finalized, and remember to remove the unused EXITs.

It is useful to use EXIT in FOR-loops, if it is not necessary to execute the
whole loop. For implementation of EXIT in a FOR-loop see chapter 9.3,
page →.

GOTO and JMP are only available in some PLC types and if used the code
cannot always be copied to another PLC.

15.4 Good program structure

The most basic way of implementing a good program structure is to split up
the program in program modules and functions. By splitting up a large
program into small programs, each with a specific task, it is possible to

create a small Main program, ‘calling’ a number of program modules and
functions.

Functions and function blocks are very effective; they can easily be reused
in other programs and tested separately. Furthermore, when correcting the
code, only one place has to be fixed. Usually, reusing functions and
function blocks is easier than reusing program modules.

It is also recommended to give the functions and program modules an
indicative name like variables, to ensure they are easy to recognize.

If a function or a program module contains more than 20 local variables, it
is an indication that the program code, must be split up into several
functions or program modules, or the numbers of variables should be
reduced by using a STRUCT.

If possible, split the program into sequences according to the EN 60848
standard. More than 40 lines of code in a program module or a function is
not good structure. A large program module can advantageously be split-up
into ACTION modules.

15.5 The use of variables

When programming, a decision between using local and global variables
must often be made. Using global variables is fast and easy to work with,
because they are only declared once in a common variable/TAGS list.
However, their use creates a bad program structure because all functions
and program modules have access to the variables.

It is recommended to use local variables where possible, and delete the
variables which are no longer in use. Limit the number of variables, by
creating fewer variables with indicative and useful name.

Use STRUCT to group different variables in an object.

To prevent using up memory unnecessarily, only create ARRAYs with the
length (size) needed.

If a function or a program module contains more than 20 local variables, it
could be an indication of a bad program structure, and the program should
be split up into functions.

15.6 Miscellaneous

Below are a few other programming tips and recommendations:

Exchange complicated IF-THEN statements with a CASE statement

Avoid ELSIF statements

Avoid creating infinite loops. Consequently DO-WHILE are not
recommended

Do not use more than 3 incorporated loops in FOR-DO loops

Each function must contain a max. of 20-25 lines of code – as much as
you can see on the screen when programming and on a paper print out

Do not use more than three-dimensional arrays (3D ARRAY)

Use CONSTANT if the same number is used more than once

Program modules or functions must contain a max. of 20 local
variables

Avoid creating unnecessary ARRAY elements. They are easy to create, and
unfortunately, some programmers create too many and too long elements,
which uses system resources unnecessarily and creates a heavy load on the
PLC

It is recommended to use parentheses in math formulas and calculations in
algorithms to make sure that the calculation is correct.

15.7 Code sharing on the internet

Google offers unique value for programmers to find code on the internet.
However, sometimes it takes a long time to find useful code, and it might
include faults. As a result, it may be easier for you to write your code

yourself. Copyright on the code can also be a reason why you cannot use it,
if you or your company will make a profit from using the code.

Another challenge when finding code on the internet is that variables and
structures often do not follow best practice for naming or programming.
Often more time is spent on finding, correcting and adjusting code,
compared to how long it would have taken to write the code yourself.

If you are employed in a company, be careful about uploading your own
code to the internet. The code is the company’s property and sharing it can
be considered theft. Also make sure you know your company’s policy
concerning program code and participation with comments and in
discussions of other companies’ PLC codes and programming solutions in
internet forums. Contributing in this way can go against ‘The Employers’
and Salaried Employees’ Act’ in Denmark and elsewhere, because your
contribution might benefit others and not the company you work for.

15.8 OOP – Object-Oriented Programming

To structure the PLC code better, the philosophy from Object-Oriented-
Programming (OOP) can be used. This means that variables and PLC code,
which are related to each other, are collected in an object. Variables which
are e.g. used for a motor are collected in a STRUCT (see chapter 4.4, page
→) and the operational conditions for a motor are collected in an ENUM
(see chapter4.3, page →).

Variables and constants which e.g. work on the same ARRAY can have the
same first name to mark their relationship.

Functions and function blocks are created so they work in objects, this
could be a sensor or an instrument, and the code can easily be reused
elsewhere in the program. Some PLC types offer OOP, as described in the
standard IEC 61131-3. These PLC types contain METHOD (mode of
operation as a function), ACTION (mode of operation as a program
module), PROPERTY and TRANSITION.

16 Guide and help during ST-programming

This chapter provides a guide that can be a help when writing a ST program.
It also includes a guide for debugging and testing program code.

16.1 Guide to programming exercises

This chapter is a guide to help the reader when solving programming
exercises.

1) Get started

Read the task and, as a rule of thumb, read it more than once. It is
important only to solve exactly what the task describes and nothing
more than that. The program specification has often been developed by
the customer who is unlikely to pay extra for additional unrequested
code. In addition, with more code comes more scope for error, which is
often experienced as bad code quality by the customer.
If the task is not well described, it is important to examine any
uncertainties within the specifications. Specifications are described in a
document creating a total overview of how the whole automation
solution has to work. The document is called a function description or
control description. A good document will help retain knowledge and
support communication with the customer to confirm the program
specifications.

2) I/O-liste

Work out an I/O list. Study what the individual sensors and instruments
have to measure and how they work. The I/O list is an important tool
both during programming, testing, commissioning and the continuous
maintenance and potential expansion of equipment at a later date. It is
important that the I/O list is more than 95% percent complete before

starting the programming process, because changes in the I/O list can
influence the programming and the subsequent tests.
Make sure that names for variables/TAGS already in the I/O list are
indicative, as the names are used across the whole project, and the I/O
list is a part of the documentation. If the task, diagram or document
already contains indicative names, use these to make sure that they are
identifiable.

3) HMI

Many PLC solutions include a user interface, which consists of an HMI
(Human Machine Interface), electrical on/off switches and control
lamps. Make a rough outline on paper/hard copy of how the picture
layout could look like. Show the picture layout to the customer, the end
user or a colleague to gain feedback. It is very time consuming to
correct diagrams and illustrations later. Therefore, it is important that
these are as correct as possible, before starting the configuration of the
HMI.
You can also work out a list of which variables/TAGS will be
exchanged between the HMI and the PLC program, because an
interface description always provides a good overview. It might not be
the same person who are configuration the HMI and programming the
PLC. This is why a list is useful as guidance for both.

4) Flowcharts

Work out flowcharts for the complex program parts, so you have a
better feeling of how the program must work. Flowcharts are good
guidance for you and others who need to understand the program flow
and how it works.

5) Design fase

Before starting the programming process, work out a design draft on
paper, which contains the different program modules, functions and
function blocks. This could take the shape of flowcharts which
describes the program and can be part of the program design phase.
This description also includes the names of the program modules and

functions, briefly describing each program module and function. A
certain level of experience is needed to be able to design a complete
program before starting the programming phase, and therefore you
might benefit from using the bottom-up method described in the next
part of this chapter.

6) Programming and implementation

There are 2 ways to start the programming and implementation phase.
The top-down and the bottom-up method.

The bottom-up method is a modular approach, where you start by
writing small pieces of PLC code/functionality, which you know are
required as parts of the program. You can start, by writing the code that
you know is needed and is clear to you. If e.g. the program has a lamp
which has to flash, write the PLC code which can make a lamp flash.
Gradually a number of small PLC code lines are written – small
building blocks. Through this process a lot of knowledge is gained, and
step by step you get the feeling of how the entire program should
function, and the individual building blocks work together.

The HMI can be used throughout the process to test small chunks of
code, and to make sure the building blocks work together as
components of a complete program. Keep testing the individual
building blocks throughout the programming process, as it is more
difficult to debug a large program. Tests of small programs are often
called module tests, and their tests can be documented via e.g. screen
dumps, so you can document to yourself and others that the program
works well.

It might be helpful to work on two projects (in the PLC developing
tool) at the same time. One project becomes the final solution, and the
other project is for testing the individual program parts (a sandbox test).
Small solutions in a project are tested, and when it works, it can be
copied (copy pasted) or rewritten into the final project.

Run-time error can cause the PLC developing tool, executed in a
Windows environment, to crash (the blue screen of death). So it is a

good idea to save the PLC code often. This must also be done every
time the PLC code works well, so you do not loose it.

If you are confused about how the individual program parts can be
implemented, use Google for inspiration. However, sometimes more
time is spent searching the internet rather than trying to code on your
own. Remember, if you get stuck, do not use more than 15 minutes
before you move on to another task. To use your time in the best
possible way, ask your company’s support department, a colleague or
do a google search to get another pair of eyes on the problem. It is often
little things that are missing from the code, and if you cannot solve it
within 15 minutes, then you probably cannot solve it within 60 minutes.

16.2 Programming and troubleshooting tips

This chapter contains suggestions to help you troubleshoot your ST program
in case of errors.

It can be challenging to troubleshoot (debug) in single steps and break
points, because the PLC program runs in real-time and the program
execution depends on variables based on sensor signals and timers. The PLC
development tools provide features for single step troubleshooting and
adding break points:

Single step is when a program is executed one code line at a time.

Break point is an intentional stop or pause in the program.

In most cases, it is easier to troubleshoot a program made up of functions
and program modules, than one large program. The individual functions and
program modules can be disabled during program execution by placing the
signs // in front of the place where they are called from. This will reduce the
program size and help locate errors.
Below find a list of tips and tricks that can help you when you program,
troubleshoot and develop the PLC program:

1) Use two project files

Work with two projects files at the same time. Use one of the project files
for the program you will eventually release. The other project file you can
use to try out code, create demo programs and develop functions and
function blocks.

2) Test your code frequently
Test your program on an ongoing basis. Write only 3 to 6 lines of code and
then test the code immediately. If you write a lot of code without testing it,
you might have to go through a lot of deleting, disabling code lines etc. to
get to test the code you wrote first.

3) Working with timers (TON and TOF)
When working with timers, change the time setting so that you do not need
to wait for the timer to expire. Remember to change the time back to the
correct time setting afterwards.
It can help to copy the ET to a new variable to ensure that the timer is
working well.

4) Working with ARRAY
The sizes of an ARRAY can be changed during testing and programming. It
is easier to test code when the ARRAY has 5 elements compared to 1000
elements. Remember to set the ARRAY to the correct size before releasing
your program.

5) Check if individual code parts are being executed
Insert this line "i: = i + 1;" to see if the program code has been executed. If
the variable i counts 1 up, the program code is working well. This can be
helpful to verify whether a program module or a function actually gets
executed when the program is running.
The method can also be used to check execution inside an IF statement:

IF S1 THEN
K1:= TRUE;
i:= i + 1; //Is the code executed, i.e. does S1 get activated?

END_IF;

6) Use the HMI for testing and troubleshooting

Design a page for the HMI to be used only for testing and troubleshooting.
Access to this page should be password protected to ensure that only you
and the service technicians have access to the page. On the page show
internal variables, sequence numbers, test code or program errors numbers
etc.

7) Using test mode flag (test bit)
A test bit (BOOL) can be created and set to TRUE during the test and
simulation of the program. It can be used to test a stop switch, which is an
NC switch and therefore a Normally Closed physical switch:

IF TestModeBit THEN
S2_STOP:= TRUE;

END_IF;

Remember to set TestModeBit to FALSE after testing.

8) Programing code with logic: B1 AND B2 OR B3
Writing code like this can be a challenge:

K1:= (B1 AND B2) OR B3;

Using the syntax above can make troubleshooting difficult. Instead use IF
statements:

K1:= FALSE;

IF (B1 AND B2) OR B3 THEN
K1:= TRUE;

END_IF;

9) Troubleshooting complex program code

It can be helpful to insert an additional test variable when the program code
is complex.

The variable can be used to check that the code inside an IF statement has
been executed.

The contents of TestVar shows which IF statement that has been executed.

TestVar:= 1; //Test

IF S1 AND S2 THEN
TestVar:= 2; //Test

IF B3 THEN
TestVar:= 3; //Test
K1:= TRUE;

ELSE
IF B4 THEN

TestVar:= 4; //Test
K2:= TRUE;

END_IF;
END_IF;
END_IF;

10) Using log file for testing

In the previous point (9) a variable was used to check complex IF
statements.

It can also be beneficial to use a STRING text as shown on the right:

The contents of TestStr can be shown on the HMI or written to a log file. As
errors could occur at night, a log file is very useful because it can maintain a
24 hour log.

11) If a variable does not change value
Try the following options:

TestStr:= ”Before IF”;
IF S1 AND S2 THEN

TestStr:= ”Line 27 in MyDemo”;
K1:= TRUE;

END_IF;

IF B3 AND B4 THEN
K1:= FALSE;
TestStr:= ”Line 30 in MyDemo”;

END_IF;

Tip1: Insert a new variable and see if your code then works as expected. The
variable has probably been changed elsewhere in the program code.

Tip2: Ensure there are "=" in the IF statements and not ":=". See chapter 9.1,
page →.

Remember if underline waves appear something needs to be fixed in the
code!

16.3 Module test and simulation of connected equipment

It is important to test the functions, function blocks and program modules
when they are developed, because it is difficult to find faults in a large
program. It can be difficult to test functions and program modules as they
often use signals from the connected components. The connected
components can be sensors, instruments, conveyor belts and robots, which
are often not available during testing.

Therefore, to perform a module test, it can be of great help to write small
pieces of PLC code which can simulate the connected components.

This chapter shows how components can be simulated and used in testing.

1. Module test of a tank volume calculation

This is a test of the function described in chapter 13.11, page → .
An array ArTankTest is created, where the calculated values can be stored.
The tank diameter and height are created as variables, so it is easy to test
different tank sizes.

It is important to test using different levels and levels outside the tank area
value range to make sure the function works well.

PROGRAM MAIN
VAR

TankD: REAL; //TankHeight
TankH: REAL; //TankDiameter
ArTankTest: ARRAY[0..7] OF REAL; //Calculated volume

END_VAR

//Set tank size
TankD:= 2;
TankH:= 4;

//Calculate volume at different levels
ArTankTest[0]:= TankVolumeCal(TankD, TankH,
LevelFromBottom:= -1);
ArTankTest[1]:= TankVolumeCal(TankD, TankH,
LevelFromBottom:= 0);
ArTankTest[2]:= TankVolumeCal(TankD, TankH,
LevelFromBottom:= 1);

ArTankTest[3]:= TankVolumeCal(TankD, TankH,
LevelFromBottom:= 1.5);
ArTankTest[4]:= TankVolumeCal(TankD, TankH,
LevelFromBottom:= 2);
ArTankTest[5]:= TankVolumeCal(TankD, TankH,
LevelFromBottom:= 3);
ArTankTest[6]:= TankVolumeCal(TankD, TankH,
LevelFromBottom:= 4);
ArTankTest[7]:= TankVolumeCal(TankD, TankH,
LevelFromBottom:= 5);

2. Simulation of box sizes

A plant contains a conveyor belt with different boxes:

The boxes can be simulated by creating an array that contains the different
box sizes that may occur:

The boxes can come in random order on the conveyor belt. To simulate this,
a random number generator is used (see chapter 13.3, page →). The
generator is set to give numbers that are in the range -3 to 3. To the random
number the 3 is added so the random number range becomes 0 to 6. This
number is index to BoxArray.

Below is the program code:

PROGRAM BoxSimulate
VAR

BoxRND: RND; //Random number generator function block
BoxIndex: INT; //Random generated index
BoxTimer: TON; //Timer to create a time delay between each box
BoxArray: ARRAY [0..BOX_MAX] OF INT := [5,10, 15, 20, 30, 40,

50]; //Box sizes
END_VAR
VAR_OUTPUT

Box: INT:= 0; //Result Box
END_VAR

VAR CONSTANT
BOX_MAX: INT:= 6; //Equal sized array allowed only

END_VAR
BoxTimer(IN:= NOT BoxTimer.Q, PT:=T#10S); //Auto reset timer

IF BoxTimer.Q = TRUE THEN // Get a new box
BoxRND(Seed:= 1, ValueMax:= BOX_MAX/2, ValueRandom =>
BoxIndex);
BoxIndex:= BoxIndex + BOX_MAX/2; //Always use a positive value

END_IF;

//Find the new box. BoxIndex have to be inside the array size
IF BoxIndex >= 0 AND BoxIndex <= BOX_MAX THEN

Box:= BoxArray[BoxIndex];
END_IF;

Every 10 seconds, the Box variable contains a new size

3. Simulation of the liquid level in a pumping station well

It is often difficult to test a pumping station well with float switches, because
the float switches are activated by different liquid levels.

This example shows how to simulate different levels:

The simulation of the levels is performed using a sinus curve (looks like a
wave) simulation signal (see chapter 13.5, page →). This signal oscillates
(change) between minimum and maximum levels in the well.
In this example, the signal is a value between 0 and 4000. When the value
reaches 1500, LS1 is activated. When the value reaches 2500, LS2 is
activated, and at 3500 LS3 is activated simulating the real world

Level simulation can be done by using this code:

PROGRAM LevelSimulate
VAR

LS1, LS2, LS3 : BOOL //Float switches in the well
n: REAL; //To have a moving level in the well

END_VAR
VAR_OUTPUT
Level: REAL //Level simulation

END_VAR
//Simulate level in the well
n:= n + 0.001; //Add for each program scan (depends on the task time)
Level:= 2000 + LREAL_TO_INT(2000 * SIN(n)); //Wave in the tank

//Active flow switches at different levels
LS1:= Level >= 1500;
LS2:= Level >= 2500;
LS3:= Level >= 3500;

The variable n counts 1 up for each program scan. Next, there are three
conditional program lines which ensures that the float switches are activated
at the right levels. Level is the simulated level in the well.

4. Simulation of a robot

If the PLC is used to control external equipment, PLC code can be written to
simulate the equipment. In this example, the equipment is a robot controlled
by a robot controller. The robot controller is a standalone computer that
controls the robot's movements. The robot controller is controlled by digital
signals:

The robot controller has a digital input DI1 which starts the robot program.
When the robot program is finished, the robot controller sends a signal to
DO1.

The robot controller can be simulated by using a function block, so that the
PLC program can be tested without being connected to the robot controller.

In this example, the execution time of the robot program (cycle time) is 7
seconds:

FUNCTION_BLOCK RobotSim

VAR_INPUT
DI1: BOOL; //Start robot program
PrgCycle : TIME; //Execution time

END_VAR
VAR_OUTPUT

DO1: BOOL; //Robot program done
END_VAR
VAR

StartSim: BOOL := FALSE;
TimeSim: TON; //Robot work timer

END_VAR

//FUNCTION BLOCK RobotSim
IF DI1 THEN

StartSim:= TRUE;
DO1:= FALSE;

END_IF;

TimeSim(IN:= StartSim, PT:= PrgCycle);
//Robot program done

IF TimeSim.Q THEN
StartSim:= FALSE;
DO1:= TRUE;

END_IF;

PROGRAM MAIN
VAR

Robot1: RobotSimu; //Function block for robot simulattion
DI1: BOOL; //Simulate digital input to robot controller
DO1: BOOL; //Simulate digital output from robot controller

END_VAR
Robot1(DI1:= DI1, PrgCycle:= T#17S, DO1=>DO1);

17 Index

$

$ sign; →
$22; 96; →

%

%IX1.0; 30; →
%QX 0.0; →

&

&; →

<

<>; →

=

=>; →

1

1.1. 1970; →
10.999999; →
100% speed; →
16 bits; →

2

2 digit REAL; →

24V; →
2D array; →

7

7 influential digits; →

A

A three dimensional array; →
ABS; →; →; →
Absolute value; →
Accumulator; →
ACOS; →
ACTION; →; →
Addition; →
AlarmDelay; →
AlarmInhibit; →
alternate; →; →; →
AND; →; →
ANSI/ISA-→; →
Areas outside the ARRAY; →
ARRAY; →; →; →; →; →; →
ARRAY [*]; →
ARRAY[*, *, *]; →
ASCII; →; →; →; →
ASIN; →
assignment; →
ATAN; →
automatic and manual operations; →
automatic operation; →
average pressure on two sensors; →
average value; →

B

Background for ST; →
BCD; →
binary values; →
black box; →
Block Comment; →
BOOL; →

Boolean; →
boot up; →
bottoms-up method; →
Bottom-up design; →
BY; →
BYTE; →

C

calculate average; →
calculation; →
CamelCase; →
CASE; →; →; →; →
CHAR; →
circular buffer; →
CNC machine; →
Comments; →; →
compare; →
CONCAT; →
CONSTANT; →; →; →
control lamp; →
conversion functions; →
conversion of temperature; →
conveyor belt; →; →; →
Copy-right; →
COS; →
Counting of items; →
CPU time; →
CTD; →
CTU; →
CTUD; →

D

Data collection; →
Data communication; →
data log; →
Data types; →
DATE; →
DEAD LOCK; →
debugging; →; →
DEC; →

Decimal errors; →
Decrement; →
DELETE; →
depalletizer; →
derived data types; →
developing functions; →
Digital Signal Processing; →
DINT; →
Direct addressing; →
Division by zero; →
Dollar tegn; →
DO-WHILE; →
DWORD; →; →; →

E

ELSE statement; →; →
ELSIF; →
EN 61131-→; →
EN60848; →; →; →
END_VAR; →
ENUM; →
EXIT; →; →
exponential filter; →
Exponential function; →
EXPT; →; →

F

FALSE; →; →
FBD; →
Fieldbus; →; →
FIFO; →
filtered signals; →
FIND; →
Finite Impulse Response; →
firmware; →
first order lag filter; →
FirstScanBit; →
Flashing Light; →
Float; →
FLOOR; →; →

Flowcharts; →; →
FOR loop; →
FOR-DO; →
formula; →
Fourier transformation; →
FRAC; →
frequency converter; →
FUNCTION; →
Function (FC); →
Function block (FB); →
FUNCTION_BLOCK; →
Functions; →

G

Get a value from an array; →
GOTOs; →
GRAD; →

H

hard coded; →
Heartbeat; →
heating process; →
Hertz; →
HEX; →; →; →
high-level programming language; →
HMI; →; →; →; →; →; →
Home position; →
Hungarian Notation; →

I

I/O list; →
IEC 61131; →; →
IEC day; →
IEC time; →
IEEE Floating; →
IF statement; →
IF-THEN-ELSE; →
Implementation of a function; →
IN; →

IN_OUT; →
INC; →
Increment; →
indirect addressing; →
input variable; →
INSERT; →
INT; →; →
INT_TO_BOOL; →
INT_TO_REAL; →
INT_TO_TIME; →
Integer; →
Invalid signs; →
IO-Lists; →
ISA-S→; →
ISO 10646; →
Iteration statement; →
iterative variable; →

J

JMPs; →

K

keep relay; →

L

Ladder Diagram; →; →
Language texts; →
Latching relay; →
LEFT; →
LEN; →
level measurement; →
Line comments; →
linear scaling; →
liquid height; →
LN; →; →
Local Temp; →
local variables; →
localized characters; →
LOG; →

Logic operators; →
Loops; →
Low Pass LP-Filter; →
LOWER_BOUND; →; →
LREAL; →
LTON; →

M

manually operated; →
mapping address; →
Masking bit; →
math functions; →
mathematical rules; →
mathematical symbols; →
MES; →
METHOD; →
MID; →
minimum value; →
MIS; →
MOD; →
Module test; →
Modulo; →
MUL; →
Multiply; →

N

natural logarithm; →
NEG; →
Negation; →
Noise Attenuation; →
Normally Closed (NC); →; →; →
Normally Open (NO); →
NOT; →

O

Object-Oriented-Programming; →
Off-delay timer; →; →
on/off signals; →
ON/OFF switch; →

On-delay timer; →
one dimensional array; →; →
One Shot;→; →
Online changes of languages; →
OOP; →; →; →
operational modes; →
OR; →; →
OSF, OSR; →
OUT; →
output card; →
output variable; →

P

PAC; →
parallel-connected components; →
parentheses; →
Pascal Case; →
Pascal Programming; →
password; →
pause a timer; →
PERSISTENT; →
PI; →
PLC developing tool; →
PLC IO-card; →
PLC scan time; →
PLC-compiler; →
PLC-tags; →
pointers; →
potentiometer; →
Power measurement; →
program module; →; →
program scan; →
program structure; →; →; →
programming library; →
program-scan time; →
PROPERTY; →
pulse counter; →
Pulse Wide Modulation; →
Pulse-Pause; →
pump control; →

Q

queue; →

R

RAD; →
raising to the power of →; →
random numbers; →
RC-filter; →
REAL; →; →; →
REAL_TO_INT; →
relational operators; →
Repeated program ‘call’; →
REPLACE; →
RETAIN; →
Retain the variable; →
return parameter; →; →
RIGHT; →
rising edge; →
RND; →
robot controller; →; →
Rounding to nearest integer; →
Run Time Error; →; →; →; →

S

S→; →
save energy; →
scaling; →
scan time; →
self holding relay; →
separated by a semicolon; →
sequence control; →
sequence diagram; →; →; →
serial-connected components; →
SET and RESET; →
SFC; →
Simulation; →
simulation signals; →
SIN; →; →; →

Sine wave; →
Snake_case; →
software structure; →
Sorting numbers; →
SQR; →
SQRT; →
square root; →
Square wave; →
startup the programming; →
state machine; →
static data; →
STOP mode; →
STRING; →; →; →; →
STRING functions; →
STRUCT; →; →
structured data type; →
submerged level sensor; →
Subtract; →
syntax; →; →

T

T#; →
TACHO HOURS; →; →
TAGS; →; →; →; →
TAN; →
tank control; →
temperature; →
test bit; →
TIME _OF_DAY; →
timer delay; →
TOF; →
Toggle switch; →
TON; →
Top-down design; →
Trafic light; →
Triangle wave; →
troubleshoot; →
TRUE; →; →
TRUNC; →; →
two-dimensional; →
two-way switch; →

U

UINT; →
unit; →
UPPER_BOUND; →; →; →
upper-case letters; →
User defined data types; →
UTC; →

V

valve matrix; →
VAR; →
VAR CONSTANT; →
VAR_GLOBAL; →
VAR_IN_OUT; →
VAR_INPUT; →
VAR_OUTPUT; →
VAR_TEMP; →
variable; →
variable creation; →
variable names; →
variable scope; →
Variables with unit; →

W

warehouse rack; →
Watt Meter; →
WCONCAT; →
WCS; →
WORD; →
WSTRING; →

X

X, Y and Z system; →
XOR; →

© 2018 - 2020 Tom Mejer Antonsen

3. Edition, June 2020

All rights reserved. No part of this publication may be reproduced, shared, or transmitted, in any
form or by any means, including electronic or mechanical methods, photocopying, recording or
otherwise, without the prior permission of the publisher.

Illustrations and graphics: Tom Mejer Antonsen

Translated by: Katrine Bay Madsen

The original version (Danish) 1. Edition issued March 2018

Publisher: Books on Demand GmbH, Copenhagen, Denmark
Printed: Books on Demand GmbH, Norderstedt, Germany

ISBN: 978-87-4301-855-1

http://www.bod.dk/
http://www.bod.dk/

	Preface
	Table of contents
	1. Introduction
	1.1 Background for ST
	1.2 Prerequisites for learning ST programming
	1.3 Foundation of knowledge
	1.4 Advantages of ST programming
	1.5 Disadvantages of ST programming

	2. How the PLC executes PLC code
	3. Comments in the programming code
	4. Data types
	4.1 Elementary data types (INT, REAL, BOOL)
	4.2 User defined data types
	4.3 Enumerated data type, ENUM
	4.4 Structured data type, STRUCT
	4.5 Collection of values with same data type, ARRAY
	5.1 Example: Variables, Scope and IO-modules

	5. Variable scope
	6.1 Variables with unit of measurement

	6. Naming the variables
	6.2 Variables with fixed values (CONSTANT)

	7. Operators, MATH and LOGIC
	7.1 Arithmetic Operators (+, -, *, /)
	7.2 Relational Operators (=, <, <=, >, >=, <>)
	7.3 Numeric Operators (MATH functions)
	7.4 Logic Operators (AND, OR, XOR, NOT)
	7.5 Logic, math formulas and use of parentheses ()

	8. Variable assignment
	8.1 MATH calculations challenge
	8.2 Division by zero
	8.3 Calculating with REAL and INT variables
	8.4 Decimal errors when using REAL
	8.5 Data communication (transfer of variables)
	8.6 Data type conversion functions
	8.7 Finding binary values of an integer (Masking bit)
	8.8 Valve matrix
	8.9 Rounding a REAL to 2 decimals (2 digit REAL)

	9. Basic ST programming
	9.1 IF-THEN-ELSE statement
	9.1.1 Example: Motor control with self holding relay
	9.1.2 Example: Manually operated tank control
	9.1.3 Example: IF-THEN-ELSE open and close valve
	9.1.4 Example: Robot control for packing items

	9.2 CASE statement
	9.2.1 Example: CASE – Setting the motor speed
	9.2.2 Example: CASE – For executing programs
	9.2.3 Example: CASE – Recognizing numbers

	9.3 Iteration statement, LOOPS
	9.4 FOR-DO Statement
	9.4.1 Example: FOR – A loop running 4 times
	9.4.2 Example: FOR – LOOP and 3D ARRAY
	9.4.3 Example: Calculation of the average value
	9.4.4 Example: Find the lowest value in an array of numbers
	9.4.5 Example: Sorting numbers inside an ARRAY

	10. Splitting up the PLC program
	10.1 Programmodules
	10.2 Functions
	10.3 Function (FC) and Function Block (FB)
	10.4 Design guide for implementation of a function
	10.4.1 Example: FC for conversion of temperature
	10.4.2 Example: FC to calculate average
	10.4.3 Example: FC for level measurement in tank
	10.4.4 Example: FC to linear scaling of sensor signal

	11. Working with text and chars, STRING
	11.1 Example: FC with STRING
	11.2 Example: Program structure for language change
	11.3 Standard functions, STRING
	11.4 Example: FC Find numbers in a STRING
	11.5 FB: Optimize insertion of values into STRUCT

	12. Built-in standard functions
	12.1 First program execution: First ScanBit
	12.2 Edge detection (One shot): R_TRIG, F_TRIG
	12.2.1 Example FB: One Shot rising detection

	12.3 Counting functions: CTU, CTD, CTUD
	12.3.1 Example: Counting of items on a conveyor belt
	12.3.2 Example FC: Instrument pulse counter

	12.4 Repeated program ‘calls’ and timer delay: TON, TOF
	12.4.1 Example: Using the program scan as timer
	12.4.2 Example: Function block for Flashing Light
	12.4.3 Example FC: Time delay on digital alarms
	12.4.4 Example FC: Monitoring of analog values and alarms
	12.4.5 Example FB: Pulse pause function
	12.4.6 Example FB: A timer with a pause function

	13. Special functions and program structures
	13.1 Simple queue structure
	13.2 FIF0 – First In First Out
	13.3 Generating random numbers (RND, Randomize)
	13.4 Digital low-pass filter (LP-filter)
	13.5 Simulation signals for testing of program code
	13.6 Conveyor belt with sequence control
	13.7 Pump control with two pumps
	13.8 Pump control with sequence control
	13.9 Automatically and manually operated pump control
	13.10 Calculating tank volume, cylinder on hemisphere
	13.11 PLC control for pumping well station with 6 pumps
	13.12 Example: Heating of liquid in a tank
	13.13 Example: FC Toggle switch (two-way switch)
	13.14 Example: 3D car park controlled by a robot
	13.15 Example: Configurable car wash control
	13.16 Example: Adapt pump speed to save energy
	13.17 PLC control of Robot and CNC machine

	14. From Ladder Diagram to ST-programming
	15. Best Practice ST-programming
	15.1 Tabulation of text and placing of SPACE
	15.2 Empty lines between code
	15.3 Avoid spaghetti code
	15.4 Good program structure
	15.5 The use of variables
	15.6 Miscellaneous
	15.7 Code sharing on the internet
	15.8 OOP – Object-Oriented Programming

	16. Guide and help during ST-programming
	16.1 Guide to programming exercises
	16.2 Programming and troubleshooting tips
	16.3 Module test and simulation of connected equipment

	17. Index
	Copyright

