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Foreword
Without a doubt, the tech industry continues to have an ever-increasing impact on our 
daily lives. The changes are as rapid as they are constant and are happening all around 
us – in our phones, cars, smart speakers, and the micro gadgets we use to improve 
efficiency, wellbeing, and connectivity. Machine learning is one of the most transformative 
technologies of our age. Businesses, academics, and engineering communities continue 
to understand, evolve, and explore the capabilities of this incredible technology, and are 
unlocking the greater potential to enable new use cases across many industries. 

I am a product manager for machine learning at Arm. In this role, I am at the center of  
the ML revolution that is happening in smartphones, the automotive industry, gaming, 
AR, VR, and other devices. It is clear to me that there will be ML functionality in every 
single electronics device in the near future – from the world's largest supercomputers, 
down to the smallest, low-powered microcontrollers. Working in ML has introduced 
me to some of the most brilliant and brightest minds in tech – those who challenge the 
orthodoxies that exist in traditional industries, ask the tough questions, and unlock new 
value through the use of ML.

When I first met Gian Marco, I could barely spell "ML," yet at that time he was already a 
veteran in the space. I was astonished by the breadth and depth of his knowledge and his 
ability to solve difficult problems. Together with the team at Arm, he has worked to make 
Arm Compute Library (ACL) the most performant library available for ML on Arm. The 
success of ACL is unrivaled. It's deployed on billions of devices worldwide – from servers 
to flagship smartphones, to smart ovens.

When Gian Marco told me he was writing a book on ML, my immediate reaction 
was "Which part?" The ML ecosystem is so diverse, with many different technologies, 
platforms, and frameworks to consider. At the same time, I knew that he was the right 
person for the job due to his extensive knowledge of all aspects of ML. Additionally, Gian 
Marco has an amazing way of explaining things in a straightforward and logical manner.



Gian Marco's book demystifies the world of TinyML by guiding us through a series  
of practical, real-world examples. Each example is outlined like a recipe, with a clear  
and consistent format throughout, providing an easy-to-follow, step-by-step guide. 
Beginning with the first principles, he explains the basics of the electronics or software 
techniques that will be used in the recipe. The book then introduces the platforms and 
technologies used, followed by the ML – where neural network models are developed, 
trained, and deployed on the target device. This really is a "soup to nuts" guide. Each 
recipe is a little more challenging than the last, and there is a nice mix of established  
and nascent technologies. You don't just learn the "how," you also get an understanding  
of the "why." When it comes to edge devices, this book really does provide a panoramic 
view of the ML space. 

Machine learning continues to disrupt all aspects of technology and getting started  
is a must for software developers. This book enables quick onboarding through the  
use of readily available and inexpensive technologies. Whether you are new to ML or  
have some experience, each recipe provides a steady ramp of knowledge and leaves 
enough scope for further self-development and experimentation. Whether you use 
this book as a guide or a reference, you will develop a strong foundation in ML for 
future development. It will empower your team to get new insights and to achieve new 
efficiencies, performance improvements, and even new functionality for your products.

– Ronan Naughton 

Senior Product Manager for Machine Learning at Arm
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Preface
This book is about TinyML, a fast-growing field at the unique intersection of machine 
learning (ML) and embedded systems to make AI work with extremely low-powered 
devices, such as microcontrollers.

TinyML is an exciting field full of opportunities. With a small budget, we can give life 
to objects that interact with the world around us smartly and transform the way we 
live for the better. However, this field can be hard to approach if we come from an ML 
background with little familiarity with embedded systems, such as microcontrollers. 
Therefore, this book aims to dispel these barriers and make TinyML also accessible to 
developers with no embedded programming experience through practical examples.  
Each chapter will be a self-contained project to learn how to use some of the technologies 
at the heart of TinyML, interface with electronic components such as sensors, and deploy 
ML models on memory-constrained devices.

TinyML Cookbook starts with a practical introduction to this multidisciplinary field to get 
you up to speed with some of the fundamentals for deploying intelligent applications on 
Arduino Nano 33 BLE Sense and Raspberry Pi Pico. As you progress, you'll tackle various 
problems that you may encounter while prototyping microcontrollers, such as controlling 
the LED state with GPIO and a push-button and supplying power to microcontrollers 
with batteries. After that, you'll cover recipes relating to temperature, humidity, and the 
three V (voice, vision, and vibration) sensors to gain the necessary skills to implement 
end-to-end smart applications in different scenarios. Then, you'll learn best practices to 
build tiny models for memory-constrained microcontrollers. Finally, you'll explore two 
of the most recent technologies, microTVM and microNPU, which will help you step up 
your TinyML game. 

By the end of this book, you'll be well versed in best practices and ML frameworks to 
develop ML apps easily on microcontrollers and have a clear understanding of the key 
aspects to consider during the development phase.
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Who this book is for
This book is for ML developers/engineers interested in developing ML applications  
on microcontrollers through practical examples quickly. The book will help you expand 
your knowledge of the revolution of TinyML by building end-to-end smart projects with 
real-world data sensors on the Arduino Nano 33 BLE Sense and the Raspberry Pi Pico. 
Basic familiarity with C/C++, Python programming, and a command-line interface 
(CLI) is required. However, no prior knowledge of microcontrollers is necessary.

What this book covers
Chapter 1, Getting Started with TinyML, provides an overview of TinyML, presenting 
the opportunities and challenges to bring ML on extremely low-power microcontrollers. 
This chapter focuses on the fundamental elements behind ML, power consumption, and 
microcontrollers that make TinyML unique and different from conventional ML in the 
cloud, desktop, or even smartphones.

Chapter 2, Prototyping with Microcontrollers, presents concise and straightforward  
recipes to deal with the relevant microcontroller programming basics. We will deal  
with code debugging and how to transmit data to the Arduino serial monitor. After  
that, we will discover how to program GPIO peripherals with the ARM Mbed API  
and use the breadboard to connect external components, such as LEDs and push-buttons. 
In the end, we will see how to power the Arduino Nano 33 BLE Sense and the Raspberry 
Pi Pico with batteries.

Chapter 3, Building a Weather Station with TensorFlow Lite for Microcontrollers, 
guides you through all the development stages of a TensorFlow-based application for 
microcontrollers and teaches you how to acquire temperature and humidity sensor 
data. The application developed in the chapter is an ML-based weather station for snow 
forecasts.

In the first part, we will focus on dataset preparation by acquiring historical weather data 
from WorldWeatherOnline. After that, we will present the relevant basics to train and test 
a model with TensorFlow. In the end, we will deploy the model on the Arduino Nano 33 
BLE Sense and the Raspberry Pi Pico with TensorFlow Lite for Microcontrollers.

Chapter 4, Voice Controlling LEDs with Edge Impulse, shows how to develop an end-to-end 
keyword spotting (KWS) application with Edge Impulse and get familiar with audio data 
acquisition and analog-to-digital (ADC) peripherals. The application considered for this 
chapter voice controls the LED emitting color (red, green, and blue) and the number of 
times to make it blink (one, two, and three).
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In the first part, we will focus on the dataset preparation, showing how to acquire audio 
data with a mobile phone. After that, we will design a model using the mel-frequency 
cepstral coefficient (MFCC) features and optimize the performance with EON Tuner.  
In the end, we will finalize the KWS application on the Arduino Nano 33 BLE Sense  
and the Raspberry Pi Pico.

Chapter 5, Indoor Scene Classification with TensorFlow Lite for Microcontrollers and the 
Arduino Nano, aims to show you how to apply transfer learning with TensorFlow and get 
familiar with the best practices to use a camera module with a microcontroller. For the 
purpose of this chapter, we will develop an application to recognize indoor environments 
with the Arduino Nano 33 BLE Sense and the OV7670 camera module.

In the first part, we will see how to acquire images from the OV7670 camera module. 
After that, we will focus on the model design, applying transfer learning with Keras 
to recognize kitchen and bathroom rooms. In the end, we will deploy the quantized 
TensorFlow Lite model on the Arduino Nano 33 BLE Sense with the help of TensorFlow 
Lite for Microcontrollers.

Chapter 6, Building a Gesture-Based Interface for YouTube Playback, aims to develop an 
end-to-end gesture recognition application with Edge Impulse and the Raspberry Pi Pico 
to get acquainted with inertial sensors, teach you how to use I2C peripherals, and write a 
multithreading application in Arm Mbed OS.

In the first part, we will collect the accelerometer data through the Edge Impulse data 
forwarder to prepare the dataset. After that, we will design a model using features in the 
frequency domain to recognize three gestures. In the end, we will deploy the application 
on the Raspberry Pi Pico and implement a Python program with the PyAutoGUI library 
to build a touchless interface for YouTube video playback.

Chapter 7, Running a Tiny CIFAR-10 Model on a Virtual Platform with the Zephyr OS, 
provides best practices to build tiny models for memory-constrained microcontrollers.  
In this chapter, we will be designing a model for the CIFAR-10 image classification dataset 
on a virtual Arm Cortex-M3-based microcontroller.

In the first part, we will install Zephyr, the primary framework used in this chapter to 
accomplish our task. After that, we will design a tiny quantized CIFAR-10 model with 
TensorFlow. This model will fit on a microcontroller with only 256 KB of program 
memory and 64 KB of RAM. In the end, we will build an image classification application 
with TensorFlow Lite for Microcontrollers and the Zephyr OS and run it on a virtual 
platform using Quick Emulator (QEMU).
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Chapter 8, Toward the Next TinyML Generation with microNPU, helps familiarize you with 
microNPU, a new class of processors for ML workloads on edge devices. In this chapter, 
we will be running a quantized CIFAR-10 model on a virtual Arm Ethos-U55 microNPU 
with the help of TVM.

In the first part, we will learn how the Arm Ethos-U55 microNPU works and install the 
software dependencies to build and run the model on the Arm Corstone-300 fixed virtual 
platform. After that, we will use the TVM compiler to convert a pretrained TensorFlow 
Lite model to C code. In the end, we will show how to compile and deploy the code 
generated by TVM into Arm Corstone-300 to perform inference with the Arm Ethos-U55 
microNPU.

To get the most out of this book
You will need a computer (either a laptop or desktop) with an x86-64 architecture and at 
least one USB port for programming the Arduino Nano 33 BLE Sense and the Raspberry Pi 
Pico microcontroller boards. For the first six chapters, you can use Ubuntu 18.04 (or later) 
or Windows (for example, Windows 10) as an OS. However, you will need Ubuntu 18.04  
(or later) for Chapter 7, Running a Tiny CIFAR-10 Model on a Virtual Platform with the 
Zephyr OS, and Chapter 8, Toward the Next TinyML Generation with microNPU.

The only software prerequisites for your computer are:

• Python (Python 3.7 recommended)

• Text editor (for example, gedit on Ubuntu)

• Media player (for example, VLC)

• Image viewer (for example, the default app in Ubuntu or Windows 10)

• Web browser (for example, Google Chrome)

During our TinyML journey, we will require different software tools to cover ML 
development and embedded programming. Thanks to Arduino, Edge Impulse, and 
Google, these tools will be in the cloud, browser-based, and with a free plan for our usage.

Arduino Nano 33 BLE Sense and Raspberry Pi Pico programs will be developed directly 
in the web browser with the Arduino Web Editor (https://create.arduino.cc). 
However, the Arduino Web Editor has a limit of 200 seconds of compilation time per day. 
Therefore, you may consider upgrading to any paid plan or using the free local Arduino 
IDE (https://www.arduino.cc/en/software) to get unlimited compilation 
time. If you are interested in the free local Arduino IDE, we have provided on GitHub 
(https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/
Docs/setup_local_arduino_ide.md) the instructions to set it up.

https://create.arduino.cc
https://www.arduino.cc/en/software
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Docs/setup_local_arduino_ide.md
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Docs/setup_local_arduino_ide.md
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The following table summarizes the hardware devices and software tools covered in each 
chapter: 

The projects may require sensors and additional electronic components to build 
realistic TinyML prototypes and experience the complete development workflow. All 
the components are listed at the beginning of each chapter and in the README.md file 
on GitHub (https://github.com/PacktPublishing/TinyML-Cookbook). 
Since you will build real electronic circuits, we require an electronic components kit 
that includes at least a solderless breadboard, colored LEDs, resistors, push-buttons, and 
jumper wires. Don't worry if you are an electronics beginner. You will learn more about 
these components in the first two chapters of this book. Furthermore, we have prepared 
a beginner shopping list on GitHub so you know precisely what to buy: https://
github.com/PacktPublishing/TinyML-Cookbook/blob/main/Docs/
shopping_list.md.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code via the GitHub repository (link available in the next section). Doing 
so will help you avoid any potential errors related to the copying and pasting of code.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Docs/shopping_list.md
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Docs/shopping_list.md
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Docs/shopping_list.md
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Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/TinyML-Cookbook. In case there's an update to 
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801814973_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "Enter the ~/project_npu folder and create three folders, named 
binaries, src, and sw_libs."

A block of code is set as follows:

export PATH=~/project_npu/binaries/FVP_Corstone_SSE-300/models/
Linux64_GCC-6.4:$PATH

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ cd ~/project_npu

$ mkdir binaries

$ mkdir src

https://github.com/PacktPublishing/TinyML-Cookbook
https://github.com/PacktPublishing/TinyML-Cookbook
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801814973_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801814973_ColorImages.pdf
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Bold: Indicates a new term, an important word, or words that you see onscreen. For 
example, words in menus or dialog boxes appear in the text like this. Here is an example: 
"Click on Corstone-300 Ecosystem FVPs and then click on the Download Linux button."

Tips or Important Notes
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to 
do it..., and There's more...).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software 
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

There's more…
This section consists of additional information about the recipe in order to make you 
more knowledgeable about the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

customercare@packtpub.com
http://www.packtpub.com/support/errata
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Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise  
in and you are interested in either writing or contributing to a book, please visit 
authors.packtpub.com.

Share Your Thoughts
Once you've read TinyML Cookbook, we'd love to hear your thoughts! Please click here to 
go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

copyright@packt.com
authors.packtpub.com
https://packt.link/r/1-801-81497-X
https://packt.link/r/1-801-81497-X


1
Getting Started  

with TinyML
Here we are, with our first step into the world of TinyML.

This chapter starts with an overview of this emerging field, presenting the  
opportunities and challenges to bring machine learning (ML) to extremely  
low-power microcontrollers.

The body of this chapter focuses on the fundamental elements behind ML, power 
consumption, and microcontrollers that make TinyML unique and different from 
conventional ML in the cloud, desktops, or even smartphones. In particular, the 
Programming microcontrollers section will be crucial for those with little experience in 
embedded programming.

After introducing the TinyML building blocks, we shall set up the development 
environment for a simple LED application, which will officially mark the beginning  
of our practical TinyML journey.

In contrast to what we will find in the following chapters, this chapter has a more 
theoretical structure to get you familiar with the concepts and terminology of this  
fast-growing technology.
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In this chapter, we're going to cover the following topics:

• Introducing TinyML

• Summary of deep learning

• Learning the difference between power and energy

• Programming microcontrollers

• Presenting Arduino Nano 33 BLE Sense and Raspberry Pi Pico

• Setting up Arduino Web Editor, TensorFlow, and Edge Impulse

• Running a sketch on Arduino Nano and Raspberry Pi Pico

Technical requirements
To complete the practical example in this chapter, we need the following:

• Arduino Nano 33 BLE Sense board

• Raspberry Pi Pico board

• Micro-USB cable

• Laptop/PC with either Ubuntu 18.04 or Windows 10 on x86-64

Introducing TinyML
Throughout all the recipes presented in this book, we will give practical solutions for  
tiny machine learning, or, as we will refer to it, TinyML. In this section, we will learn 
what TinyML is and the vast opportunities it brings.

What is TinyML?
TinyML is the set of technologies in ML and embedded systems to make use of smart 
applications on extremely low-power devices. Generally, these devices have limited 
memory and computational capabilities, but they can sense the physical environment 
through sensors and act based on the decisions taken by ML algorithms.

In TinyML, ML and the deployment platform are not just two independent entities but 
rather entities that need to know each other at best. In fact, designing an ML architecture 
without considering the target device characteristics will make it challenging to deploy 
effective and working TinyML applications. 
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On the other hand, it would be impossible to design power-efficient processors to expand 
the ML capabilities of these devices without knowing the software algorithms involved.

This book will consider microcontrollers as the target device for TinyML, and the 
following subsection will help motivate our choice.

Why ML on microcontrollers?
The first and foremost reason for choosing microcontrollers is their popularity in various 
fields, such as automotive, consumer electronics, kitchen appliances, healthcare, and 
telecommunications. Nowadays, microcontrollers are everywhere and also invisible in our 
day-to-day electronic devices.

With the rise of the internet of things (IoT), microcontrollers saw exponential market 
growth. In 2018, the market research company IDC (https://www.idc.com) reported 
28.1 billion microcontrollers sold worldwide and forecasted growth to 38.2 billion by 
2023 (www.arm.com/blogs/blueprint/tinyML). Those are impressive numbers 
considering that the smartphone and PC markets reported 1.5 billion and 67.2 million 
devices, respectively, sold in the same year. 

Therefore, TinyML represents a significant step forward for IoT devices, driving the 
proliferation of tiny connected objects capable of performing ML tasks locally.

The second reason for choosing microcontrollers is that they are inexpensive, easy to 
program and are powerful enough to run sophisticated deep learning (DL) algorithms.

However, why can't we offload the computation to the cloud since it is much more 
performant? In other words, why do we need to run ML locally? 

Why run ML locally?
There are three main answers to this question – latency, power consumption, and privacy:

• Reducing latency: Sending data back and forth to and from the cloud is not instant 
and could affect applications that must respond reliably within a time frame.

• Reducing power consumption: Sending and receiving data to and from the cloud is 
not power-efficient even when using low-power communication protocols such as 
Bluetooth.

https://www.idc.com
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In the following stacked bar chart, we report the power consumption breakdown for 
the onboard components on the Arduino Nano 33 BLE Sense board, one of the two 
microcontroller boards employed in this book:

Figure 1.1 – Power consumption breakdown for the Arduino Nano 33 BLE Sense board 
As we can see from the power consumption breakdown, the CPU computation is 
more power-efficient than Bluetooth communication (14% versus 65%), so it is 
preferable to compute more and transmit less to reduce the risk of rapid battery 
drain. Generally, radio is the component that consumes the most energy in typical 
embedded devices. 

• Privacy: Local ML means preserving user privacy and avoiding sharing sensitive 
information.

Now that we know the benefits of running ML on these tiny devices, what are the practical 
opportunities and challenges of bringing ML to the very edge?

The opportunities and challenges for TinyML
TinyML finds its natural home wherever a power supply from the mains is impossible or 
complex to have, and the application must operate with a battery for as long as possible.

If we think about it, we are already surrounded by battery-powered devices that use ML 
under the hood. For example, wearable devices, such as smartwatches and fitness tracking 
bands, can recognize human activities to track our health goals or detect dangerous 
situations, such as a fall to the ground.

These everyday objects are TinyML applications for all intents and purposes because  
they are battery-powered and need on-device ML to give meaning to the data acquired  
by the sensors.
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However, battery-powered solutions are not limited to wearable devices only. There are 
scenarios where we might need devices to monitor environments. For example, we may 
consider deploying battery-powered devices running ML in a forest to detect fires and 
prevent fires from spreading over a large area.

There are unlimited potential use cases for TinyML, and the ones we just briefly 
introduced are only a few of the likely application domains.

However, along with the opportunities, there are some critical challenges to face. The 
challenges are from the computational perspective because our devices are limited in 
memory and processing power. We work on systems with a few kilobytes of RAM and, in 
some cases, processors with no floating-point arithmetic acceleration.

On the other hand, the deployment environment could be unfriendly. Environmental 
factors, such as dust and extreme weather conditions, could get in the way and influence 
the correct execution of our applications.

In the following subsection, we will present the typical deployment environments for 
TinyML.

Deployment environments for TinyML
A TinyML application could live in both centralized and distributed systems.

In a centralized system, the application does not necessarily require communication  
with other devices.

A typical example is keyword spotting. Nowadays, we interact with our smartphones, 
cameras, drones, and kitchen appliances seamlessly with our voices. The magic words 
OK Google, Alexa, and so on that we use to wake up our smart assistants are a classic 
example of an ML model constantly running locally in the background. The application 
requires running on a low-power system without sending data to the cloud to be effective, 
instantly, and minimize power consumption.

Usually, centralized TinyML applications aim to trigger more power-hungry 
functionalities and benefit from being private by nature since they do not need to send 
any data to the cloud.
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In a distributed system, the device (that is, the node or sensor node) still performs ML 
locally but also communicates with nearby devices or a host to achieve a common goal,  
as shown in the following figure:

Figure 1.2 – Wireless sensor network

Important Note
Since the nodes are part of a network and typically communicate through 
wireless technologies, we commonly call the network a wireless sensor 
network (WSN).

Although this scenario could be contrasted with the power consumption implications 
of transmitting data, the devices may need to cooperate to build meaningful and precise 
knowledge about the working environment. Knowing the temperature, humidity, soil 
moisture, or other physical quantities from a specific node could be irrelevant for some 
applications that need a global understanding of the diffusion of those quantities instead. 

For example, consider an application to improve agriculture efficiency. In this case, a 
WSN might help identify what areas of the field require less or more water than others 
and make the irrigation more efficient and autonomous. As we can imagine, efficient 
communication protocols will be vital for the network lifetime, and also TinyML plays  
a role in achieving this goal. Since sending raw data consumes too much energy, ML  
could perform a partial computation to reduce the data to transmit and the frequency 

of communications.

TinyML offers endless possibilities, and tinyML Foundation is the best place to find out 
the endless opportunities given by this fast-growing field of ML and embedded systems.
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tinyML Foundation
tinyML Foundation (www.tinyml.org) is a non-profit professional organization 
supporting and connecting the TinyML world.

To do this, tinyML Foundation, supported by several companies, including Arm,  
Edge Impulse, Google, and Qualcomm, is growing a diverse community worldwide  
(such as the US, UK, Germany, Italy, Nigeria, India, Japan, Australia, Chile, and 
Singapore) between hardware, software, system engineers, scientists, designers,  
product managers, and businesspeople.

The foundation has been promoting different free initiatives online and in-person to 
engage experts and newcomers to encourage knowledge sharing, connect, and create  
a healthier and more sustainable world with TinyML.

Tip
With several Meetup (https://www.meetup.com) groups in different 
countries, you can join a TinyML one near you for free (https://www.
meetup.com/en-AU/pro/TinyML/) to always be up to date with new 
TinyML technologies and upcoming events.

After introducing TinyML, it is now time to explore its ingredients in more detail. The 
following section will analyze the one that makes our devices capable of intelligent 
decisions: DL.

Summary of DL
ML is the ingredient to make our tiny devices capable of making intelligent decisions. 
These software algorithms heavily rely on the right data to learn patterns or actions based 
on experience. As we commonly say, data is everything for ML because it is what makes or 
breaks an application.

This book will refer to DL as a specific class of ML that can perform complex classification 
tasks directly on raw images, text, or sound. These algorithms have state-of-the-art 
accuracy and could also be better than humans in some classification problems. This 
technology makes voice-controlled virtual assistants, facial recognition systems, and 
autonomous driving possible, just to name a few.

A complete discussion of DL architectures and algorithms is beyond the scope of this 
book. However, this section will summarize some of its essential points that are relevant  
to understand the following chapters.

www.tinyml.org
https://www.meetup.com
https://www.meetup.com/en-AU/pro/TinyML/
https://www.meetup.com/en-AU/pro/TinyML/
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Deep neural networks
A deep neural network consists of several stacked layers aimed at learning patterns.

Each layer contains several neurons, the fundamental compute elements for artificial 
neural networks (ANNs) inspired by the human brain.

A neuron produces a single output through a linear transformation, defined as the 
weighted sum of the inputs plus a constant value called bias, as shown in the following 
diagram:

Figure 1.3 – Neuron representation

The coefficients of the weighted sum are called weights.

Weights and bias are obtained after an iterative training process to make the neuron 
capable of learning complex patterns.

However, neurons can only solve simple linear problems with linear transformations. 
Therefore, non-linear functions, called activations, generally follow the neuron's output 
to help the network learn complex patterns. Activation is a non-linear function performed 
on the neuron's output:



Summary of DL     9

Figure 1.4 – Activation function

A widespread adopted activation function is the rectified linear unit (ReLU), described 
in the following code block:

float relu(float input) {

  return max(input, 0);

}

Its computational simplicity makes it preferable to other non-linear functions, such as a 
hyperbolic tangent or logistic sigmoid, that require more computational resources.

In the following subsection, we will see how the neurons are connected to solve complex 
visual recognition tasks.

Convolutional neural networks
Convolutional neural networks (CNNs) are specialized deep neural networks 
predominantly applied to visual recognition tasks.

We can consider CNNs as the evolution of a regularized version of the classic fully 
connected neural networks with dense layers (that is, fully connected layers).
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As we can see in the following diagram, a characteristic of fully connected networks is 
connecting every neuron to all the output neurons of the previous layer:

Figure 1.5 – Fully connected network

Unfortunately, this approach does not work well for training a model for image 
classification.

For instance, if we considered an RGB image of size 320x240 (width x height), we would 
need 230,400 (320*240*3) weights for just one neuron. Since our layers will undoubtedly 
need several neurons to discern complex problems, the model will likely overfit given the 
unmanageable number of trainable parameters.

In the past, data scientists adopted feature engineering techniques to extract a reduced 
set of good features from images. However, the approach suffered from being difficult to 
perform feature selection, which was time-consuming, and domain-specific.

With the rise of CNNs, visual recognition tasks saw improvement thanks to convolution 
layers that make feature extraction part of the learning problem.

Based on the assumption that we are dealing with images, and inspired by biological 
processes in the animal visual cortex, the convolution layer borrows the widely adopted 
convolution operator from image processing to create a set of learnable features.

The convolution operator is executed similarly to other image processing routines: sliding 
a window application (filter or kernel) on the entire input image and applying the dot 
product between its weights and the underlying pixels, as shown in the following figure:
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Figure 1.6 – Convolution operator

This approach brings two significant benefits: 

• It extracts the relevant features automatically without human intervention.

• It reduces the number of input signals per neuron considerably.

For instance, applying a 3x3 filter on the preceding RGB image would only require 27 
weights (3*3*3). 

Like fully connected layers, convolution layers need several convolution kernels to learn 
as many features as possible. Therefore, the convolution layer's output generally produces 
a set of images (feature maps), commonly kept in a multidimensional memory object 
called a tensor. 

When designing CNNs for visual recognition tasks, we usually place the fully connected 
layers at the network's end to carry out the prediction stage. Since the output of the 
convolution layers is a set of images, typically, we adopt subsampling strategies to reduce 
the information propagated through the network and then reduce the risk of overfitting 
when feeding the fully connected layers.

Typically, there are two ways to perform subsampling:

• Skipping the convolution operator for some input pixels. As a result, the output of 
the convolution layer will have fewer spatial dimensions than the input ones.

• Adopting subsampling functions such as pooling layers. 
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The following figure shows a generic CNN architecture, where the pooling layer reduces 
the spatial dimensionality and the fully connected layer performs the classification stage:

Figure 1.7 – Generic CNN with a pooling layer to reduce the spatial dimensionality

One of the most critical aspects to consider when deploying DL networks for TinyML is 
the model size, generally defined as the memory required for storing the weights.

Since our tiny platforms have limited physical memory, we require the model to be 
compact to fit the target device.

However, the memory constraint is not the only challenge we could encounter when 
deploying a model on microcontrollers. For example, although the trained model 
commonly employs arithmetic operations in floating-point precision, CPUs on 
microcontrollers could not have hardware acceleration for it.

Therefore, quantization is an indispensable technique to overcome the preceding 
limitations.

Quantization
Quantization is the process of performing neural network computations in lower bit 
precision. The widely adopted technique for microcontrollers applies the quantization 
post-training and converts the 32-bit floating-point weights to 8-bit integer values. This 
technique brings a 4x model size reduction and a significant latency improvement with 
very little or no accuracy drop.

DL is essential to building applications that make intelligent decisions. However, the key 
requirement for battery-powered applications is the adoption of a low-power device. So 
far, we have mentioned power and energy in general terms but let's see what they mean 
practically in the following section.
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Learning the difference between power and 
energy
Power matters in TinyML, and the target we aim for is in the milliwatt (mW) range or 
below, which means thousands of times more efficient than a traditional desktop machine.

Although there are cases where we might consider using energy harvesting solutions, 
such as solar panels, those could not always be possible because of cost and physical 
dimensions.

However, what do we mean by power and energy? Let's discover these terms by giving a 
basic overview of the fundamental physical quantities governing electronic circuits.

Voltage versus current
Current is what makes an electronic circuit work, which is the flow of electric charges 
across surface A of a conductor in a given time, as described in the following diagram:

Figure 1.8 – Current is a flow of electric charges across surface A at a given time

The current is defined as follows:

Here, we have the following:

• I: Current, measured in amperes (A)

• Q: The electric charges across surface A in a given time, measured in coulombs (C) 

• t: Time, measured in seconds (s)

𝐼𝐼 = 𝑄𝑄
𝑡𝑡  



14     Getting Started with TinyML

The current flows in a circuit in the following conditions:

• We have a conductive material (for example, copper wire) to allow the electric 
charge to flow.

• We have a closed circuit, so a circuit without interruption, providing a continuous 
path to the current flow.

• We have a potential difference source, called voltage, defined as follows:

𝑉𝑉 = 𝑉𝑉+ − 𝑉𝑉− 
Voltage is measured with volts (V) and produces an electric field to allow the electric 
charge to flow in the circuit. Both the USB port and battery are potential difference 
sources. 

The symbolic representation of a power source is given in the following figure:

Figure 1.9 – Battery symbol representation

To avoid constantly referring to V+ and V-, we define the battery's negative terminal as a 
reference by convention, assigning it 0 V (GND).

Ohm's law relates voltage and current, which says through the following formula that the 
current through a conductor is proportional to the voltage across a resistor:

A resistor is an electrical component used to reduce the current flow. This component has 
a resistance measured with Ohm (Ω) and identified with the letter R.

The symbolic representation of a resistor is shown in the following figure:

Figure 1.10 – Resistor symbol representation 
(https://openclipart.org/detail/276048/47k-ohm-resistor)

𝑉𝑉
𝑅𝑅 = 𝐼𝐼 

https://openclipart.org/detail/276048/47k-ohm-resistor
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Resistors are essential components for any electronic circuit, and for the ones used in this 
book, their value is reported through colored bands on the elements. Standard resistors 
have four, five, or six bands. The color on the bands denotes the resistance value, as shown 
in the following example:

Figure 1.11 – Example of four-band resistor

To easily decode the color bands, we recommend using the online tool from Digi-Key 
(https://www.digikey.com/en/resources/conversion-calculators/
conversion-calculator-resistor-color-code).

Now that we know the main physical quantities governing electronic circuits, we are ready 
to see the difference between power and energy.

Power versus energy
Sometimes we interchange the words power and energy because we think they're related, 
but actually, they refer to different physical quantities. In fact, energy is the capacity 
for doing work (for example, using force to move an object), while power is the rate of 
consuming energy. 

In practical terms, power tells us how fast we drain the battery, so high power implies a 
faster battery discharge.

Power and energy are related to voltage and current through the following formulas:

𝑃𝑃 = 𝑉𝑉 ⋅ 𝐼𝐼 
𝐸𝐸 = 𝑃𝑃 ⋅ 𝑇𝑇 

https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-resistor-color-code
https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-resistor-color-code
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The following table presents the physical quantities in the power and energy formulas:

Figure 1.12 – Table reporting the physical quantities in the power and energy formulas

On microcontrollers, the voltage supply is in the order of a few volts (for example, 3.3 V), 
while the current consumption is in the range of micro-ampere (µA) or milli-ampere 
(mA). For this reason, we commonly adopt microwatt (µW) or milliwatt (mW) for 
power and microjoule (µJ) or millijoule (mJ) for energy.

Now, consider the following problem to get familiar with the power and energy concepts.

Suppose you have a processing task and you have the option to execute it on two different 
processors. These processors have the following power consumptions:

Figure 1.13 – Table reporting two processing units with different power consumptions

What processor would you use to execute the task?

Although PU1 has higher (4x) power consumption than PU2, this does not imply that 
PU1 is less energy-efficient. On the contrary, PU1 could be more computationally 
performant than PU2 (for example, 8x), making it the best choice from an energy 
perspective, as shown in the following formulas:

𝐸𝐸𝑃𝑃𝑃𝑃1 = 12 ⋅ 𝑇𝑇1 

𝐸𝐸𝑃𝑃𝑃𝑃2 = 3 ⋅ 𝑇𝑇2 = 3 ⋅ 8 ⋅ 𝑇𝑇1 = 24 ⋅ 𝑇𝑇1 
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From the preceding example, we can say that PU1 is our better choice because it requires 
less energy from the battery under the same workload.

Commonly, we adopt OPS per Watt (arithmetic operations performed per Watt) to 
bind the power consumption to the computational resources of our processors.

Programming microcontrollers
A microcontroller, often shortened to MCU, is a full-fledged computer because it has 
a processor (which can also be multicore nowadays), a memory system (for example, 
RAM or ROM), and some peripherals. Unlike a standard computer, a microcontroller fits 
entirely on an integrated chip, and it has incredibly low power and low price.

We often confuse microcontrollers with microprocessors, but they refer to different 
devices. In contrast to a microcontroller, a microprocessor integrates only the processor 
on a chip, requiring external connections to a memory system and other components to 
form a fully operating computer.

The following figure summarizes the main differences between a microprocessor and a 
microcontroller:

Figure 1.14 – Microprocessor versus microcontroller

As for all processing units, the target application influences their architectural design 
choice.

For example, a microprocessor tackles scenarios where the tasks are usually as follows:

• Dynamic (for example, can change with user interaction or time)

• General-purpose

• Compute intensive
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A microcontroller addresses completely different scenarios, and in the following list, we 
shall highlight some of the critical ones:

• The tasks are single-purpose and repetitive:

In contrast to microprocessor applications, the tasks are generally single-purpose 
and repetitive, so the microcontroller does not require strict re-programmability. 
Typically, the applications are less computationally intensive than the 
microprocessor ones and do not have frequent interactions with the user. However, 
they can interact with the environment or other devices.

As an example, you could consider a thermostat. The device only requires monitoring 
the temperature at regular intervals and communicating with the heating system. 

• We could have time frame constraints:

Certain tasks must complete execution within a specific time frame. This 
requirement is the characteristic for real-time applications (RTAs), where the 
violation of the time constraint may affect the quality of service (soft real time)  
or be hazardous (hard real time).

An automobile safety system (ABS) is an example of a hard RTA because the 
electronic system must respond within a time frame to prevent the wheels from 
locking when applying brake pedal pressure.

We require a latency-predictable device to build an effective RTA, so all hardware 
components (CPU, memory, interrupt handler, and so on) must respond in a 
precise number of clock cycles. Hardware vendors commonly report the latency, 
expressed in clock cycles, in the datasheet.

The time constraint poses some architectural design adaptations and limitations  
to a general-purpose microprocessor. 

An example is the memory management unit (MMU) that we primarily use to 
translate virtual memory addresses, and we do not usually have it in the CPU for 
microcontrollers.

• Low-power constraints:

Applications could live in a battery-powered environment, so the microcontroller 
must be low-power to extend their lifetime.

As per the time frame constraints, power consumption also poses some 
architectural design differences from a microprocessor.

Without going deeper into the hardware details, all the off-chip components 
generally reduce power efficiency as a rule of thumb. That is the main reason  
why microcontrollers integrate both the RAM and a kind of  hard drive (ROM) 
within the chip.
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Typically, microcontrollers also have lower clock frequency than microprocessors to 
consume less energy.

• Physical size constraints:

The device could live in products that are small in size. Since the microcontroller 
is a computer within a chip, it is perfect for these scenarios. The package size for a 
microcontroller can vary but typically is in the range of a few square millimeters.

In 2018, a team of engineers at the University of Michigan created the "world's 
smallest computer," which was 0.3 mm in size with a microcontroller powered 
by an Arm Cortex-M0+ processor and a battery-less sensor system for cellular 
temperature measurement (https://news.umich.edu/u-m-researchers-
create-worlds-smallest-computer/).

• Cost constraints:

All applications are cost-sensitive, and by designing a smaller chip that integrates 
a CPU, memory, and peripherals, we make microcontrollers economically more 
advantageous than microprocessors. 

In the following table, we have summarized what we have just discussed for easy future 
reference:

Figure 1.15 – Table comparing a microprocessor with a microcontroller

https://news.umich.edu/u-m-researchers-create-worlds-smallest-computer/
https://news.umich.edu/u-m-researchers-create-worlds-smallest-computer/
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In the next section, we will start going deeper into the architectural aspects of 
microcontrollers by analyzing the memory architecture and internal peripherals.

Memory architecture
Microcontrollers are CPU-based embedded systems, which means that the CPU is 
responsible for interacting with all its subcomponents.

All CPUs require at least memory to read the instructions and store/read variables during 
the program's execution.

In the microcontroller context, we physically dedicate two separate memories for the 
instructions and data: 

• Program memory (ROM)

This is non-volatile read-only memory reserved for the program to execute. 
Although its primary goal is to contain the program, it can also store constant data. 
Thus, program memory is similar to our everyday computers' hard drives.

• Data memory (RAM)

This is volatile memory reserved to store/read temporary data. Since it is RAM, we 
lose its content when switching off the system.

Since program and data memory are functionally opposite, we usually employ different 
semiconductor technologies. In particular, we can find Flash technologies for the program 
memory and static random-access memory (SRAM) for the data memory.

Flash memories are non-volatile and offer low power consumption but are generally 
slower than SRAM. However, given the cost advantage over SRAM, we can find larger 
program memory than data memory.

Now that we know the difference between program and data memory, where can we store 
the weights for our deep neural network model?

The answer to this question depends on whether the model has constant weights. If the 
weights are constant, so do not change during inference, it is more efficient to store them 
in program memory for the following reasons:

• Program memory has more capacity than SRAM.

• It reduces memory pressure on the SRAM since other functions require storing 
variables or chunks of memory at runtime.

We want to remind you that microcontrollers have limited memory resources, so a 
decision like this can make a difference to memory efficiency.
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Peripherals
Microcontrollers offer extra on-chip features to expand their capabilities and make these 
tiny computers different from each other. These features are the peripherals and are 
essential because they can interface with sensors or other external components.

Each peripheral has a dedicated functionality, and it is assigned to a metal leg (pin) of the 
integrated circuit.

We can refer to the peripheral pin assignment section in the microcontroller datasheet 
to find out each pin's functionalities. Hardware vendors typically number the pins 
anti-clockwise, starting from the top-left corner of the chip, marked with a dot for easy 
reference, as shown in the following figure:

Figure 1.16 – Pin assignment. Pins are numbered anti-clockwise, starting from the top-left corner, 
marked with a dot

Since peripherals can be of various types, we can group them into four main categories for 
simplicity.
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General-purpose input/output (GPIO or IO)
GPIOs do not have a predefined and fixed purpose. Their primary function is to provide 
or read binary signals that, by nature, can only live in two well-defined states: HIGH (1) 
or LOW (0). The following figure shows an example of a binary signal:

Figure 1.17 – A binary signal can only live in two states: HIGH (1) and LOW (0)

Typical GPIO usages are as follows:

• Turning on and off an LED

• Detecting whether a button is pressed

• Implementing complex digital interfaces/protocols such as VGA

GPIO peripherals are versatile and generally available in all microcontrollers.

Analog/digital converters
In TinyML, our applications will likely be dealing with time-varying physical quantities, 
such as images, audio, and temperature.

Whatever these quantities are, the sensor transforms them into a continuous electrical 
signal interpretable by the microcontrollers. This electrical signal, which can be either a 
voltage or current, is commonly called an analog signal.

The microcontroller, in turn, needs to convert the analog signal into a digital format so 
that the CPU can process the data.

Analog/digital converters act as translators between analog and digital worlds.

An analog-to-digital converter (ADC) samples the analog signal at fixed interval times 
and converts the electrical signal into a digital format.

A digital-to-analog converter (DAC) performs the opposite functionality: converting the 
internal digital format into an analog signal.
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Serial communication
Communication peripherals integrate standard communication protocols to 
control external components. Typical serial communication peripherals available in 
microcontrollers are I2C, SPI, UART, and USB.

Timers
In contrast to all the peripherals we just described, the timers do not interface with 
external components since they are used to trigger or synchronize events.

With this section, we have completed the overview of the TinyML ingredients. Now that 
we are familiar with the terminology and general concepts, we can start presenting the 
development platforms used in this book.

Presenting Arduino Nano 33 BLE Sense and 
Raspberry Pi Pico
A microcontroller board is a printed circuit board (PCB) that combines the 
microcontroller with the necessary electronic circuit to make it ready to use. In some 
cases, the microcontroller board could integrate additional devices to target specific end 
applications.

Arduino Nano 33 BLE Sense (in short, Arduino Nano) and Raspberry Pico are the 
microcontroller boards used in this book.

Arduino Nano, designed by Arduino (https://www.arduino.cc), is a board that 
combines a microcontroller (nRF52840) powered by an Arm Cortex-M4 processor with 
several sensors and Bluetooth radio for an easy TinyML development experience. We will 
require just a few additional external components when developing on Arduino Nano 
since most are already available on-board.

Raspberry Pi Pico, designed by the Raspberry Pi Foundation (https://www.
raspberrypi.org), does not provide sensors and the Bluetooth module on-board. 
Still, it has a microcontroller (RP2040) powered by a dual-core Arm Cortex-M0+ 
processor for unique and powerful TinyML applications. Therefore, this board will be 
ideal for learning how to interface with external sensors and build electronic circuits.

https://www.arduino.cc
https://www.raspberrypi.org
https://www.raspberrypi.org
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The following figure shows a side-by-side comparison to see the features that make our 
platforms different from each other:

Figure 1.18 – Arduino Nano 33 BLE Sense versus Raspberry Pi Pico

As we can see from the side-by-side comparison, they both have an incredibly small 
form-factor, a USB port for power/programming, and an Arm-based microcontroller. 
At the same time, they also have unique features that make the boards ideal for targeting 
different TinyML development scenarios.

Setting up Arduino Web Editor, TensorFlow, 
and Edge Impulse
For TinyML, we require different software tools to cover both ML development  
and embedded programming. Thanks to Arduino, Edge Impulse, and Google,  
most of the tools considered in this book are browser-based and require only a few 
configuration steps.

In this section, we will introduce these tools and prepare the Arduino development 
environment required for writing and uploading programs to Arduino Nano and 
Raspberry Pi Pico.
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Getting ready with Arduino Web Editor
Arduino Integrated Development Environment (Arduino IDE) is a software application 
developed by Arduino (https://www.arduino.cc/en/software) for writing and 
uploading programs to Arduino-compatible boards. Programs are written in C++ and are 
commonly called sketches by Arduino programmers.

Arduino IDE makes software development accessible and straightforward to developers 
with no background in embedded programming. In fact, the tool hides all the 
complexities that we might have when dealing with embedded platforms, such as cross-
compilation and device programming.

Arduino also offers a browser-based IDE (https://create.arduino.cc/editor). 
It is called Arduino Web Editor and makes programmability even more straightforward 
because programs can be written, compiled, and uploaded on microcontrollers directly 
from the web browser. All the Arduino projects presented in this book will be based on 
this cloud-based environment. However, since the free plan of Arduino Web Editor is 
limited to 200 seconds of compilation time per day, you may consider upgrading to a paid 
plan or using the free local Arduino IDE to get unlimited compilation time.

Note
In the following chapters of this book, we will use Arduino IDE and Arduino 
Web Editor interchangeably.

Getting ready with TensorFlow
TensorFlow (https://www.tensorflow.org) is an end-to-end free and open 
source software platform developed by Google for ML. We will be using this software to 
develop and train our ML models using Python in Google Colaboratory.

Colaboratory (https://colab.research.google.com/notebooks),  
in short, Colab, is a free Python development environment that runs in the browser  
using Google Cloud. It is like a Jupyter notebook but has some essential differences,  
such as the following: 

• It does not need setting up.

• It is cloud-based and hosted by Google.

• There are numerous Python libraries pre-installed (including TensorFlow).

• It is integrated with Google Drive.

https://www.arduino.cc/en/software
https://create.arduino.cc/editor
https://www.tensorflow.org
https://colab.research.google.com/notebooks
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• It offers free access to GPU and TPU shared resources.

• It is easy to share (also on GitHub).

Therefore, TensorFlow does not require setting up because Colab comes with it.

In Colab, we recommend enabling the GPU acceleration on the Runtime tab to speed  
up the computation on TensorFlow. To do so, navigate to Runtime | Change runtime 
type and select GPU from the Hardware accelerator drop-down list, as shown in the 
following screenshot:

Figure 1.19 – You can enable the GPU acceleration from Runtime | Change runtime type

Since the GPU acceleration is a shared resource among other users, there is limited access 
to the free version of Colab.

Tip
You could subscribe to Colab Pro (https://colab.research.
google.com/) to get priority access to the fastest GPUs.

TensorFlow is not the only tool from Google that we will use. In fact, once we have 
produced the ML model, we will need to run it on the microcontroller. For this, Google 
developed TensorFlow Lite for Microcontrollers.

TensorFlow Lite for Microcontrollers (https://www.tensorflow.org/lite/
microcontrollers), in short, TFLu, is the key software library to unlock ML 
applications on low-power microcontrollers. The project is part of TensorFlow and  
allows running DL models on devices with a few kilobytes of memory. Written in C/C++, 
the library does not require an operating system and dynamic memory allocation.

TFLu does not need setting up because it is included in Arduino Web Editor.

https://colab.research.google.com/
https://colab.research.google.com/
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
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Getting ready with Edge Impulse
Edge Impulse (https://www.edgeimpulse.com) is a software platform for  
end-to-end ML development. It is free for developers, and in a few minutes, we can  
have an ML model up and running on our microcontrollers. In fact, the platform 
integrates tools for the following:

• Data acquisition from sensor data

• Applying digital signal processing routines on input data

• Building and training ML models

• Testing ML models

• Deploying ML models on microcontrollers

• Finding the best signal processing block and ML model for your use case

Info
All these tools are also accessible through open APIs.

Developers just need to sign up on the website to access all these features directly within 
the UI.

How to do it…
The following subsections will show the steps for setting up Arduino Web Editor:

1. Sign up to Arduino at https://auth.arduino.cc/register.
2. Log in to Arduino Web Editor (https://create.arduino.cc/editor).
3. Install the Arduino agent following the step-by-step installation at https://

create.arduino.cc/getting-started/plugin/welcome.
4. Install the Raspberry Pi Pico SDK:

 � Windows:

i. Download the pico-setup-windows file from https://github.com/
ndabas/pico-setup-windows/releases.

ii. Install pico-setup-installer.

https://www.edgeimpulse.com
https://create.arduino.cc/getting-started/plugin/welcome
https://create.arduino.cc/getting-started/plugin/welcome
https://github.com/ndabas/pico-setup-windows/releases
https://github.com/ndabas/pico-setup-windows/releases
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 � Linux:

i. Open Terminal.
ii. Create a temporary folder:

$ mkdir tmp_pico

iii. Change directory to your temporary folder:

$ cd tmp_pico

iv. Download the Pico setup script with wget:

$ wget wget https: //raw.githubusercontent.com/
raspberrypi/ pico-setup/master/pico_setup.sh

v. Make the file executable:

$ chmod +x pico_setup.sh

vi.  Execute the script:

$ ./pico_setup.sh

vii. Add $USER to the dialout group:

$ sudo usermod -a -G dialout $USER

5. Check whether Arduino Web Editor can communicate with Arduino Nano:

i. Open Arduino Web Editor in a web browser.
ii. Connect the Arduino Nano board to a laptop/PC through a micro-USB cable.

The editor should recognize the board in the device dropdown and report Arduino 
Nano 33 BLE and the port's name (for example, /dev/ttyACM0):

Figure 1.20 – Expected output when Arduino Web Editor can communicate with Arduino Nano

6. Check whether Arduino Web Editor can communicate with Raspberry Pi Pico:

i. Open Arduino Web Editor in a browser.
ii. Connect the Raspberry Pi Pico board to a laptop/PC through a micro-USB 

cable.
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The editor should recognize the board and report Raspberry Pi Pico and the port's 
name (for example, /dev/ttyACM0):

Figure 1.21 – Expected output when Arduino Web Editor can communicate with Raspberry Pi Pico

We have successfully set up the tools that will help us develop our future recipes. Before 
ending this chapter, we want to test a basic example on Arduino Nano and Raspberry Pi 
Pico to officially mark the beginning of our journey into the world of TinyML.

Running a sketch on Arduino Nano and 
Raspberry Pi Pico
In this recipe, we will blink the Arduino Nano and Raspberry Pi Pico LED using the Blink 
prebuilt example from Arduino Web Editor.

This "Hello World" program consists of a simple LED blinking through the GPIO 
peripheral; from there, we will be able to go anywhere. 

This exercise aims to get you familiar with Arduino Web Editor and help you to 
understand how to develop a program with Arduino.

Getting ready
An Arduino sketch consists of two functions, setup() and loop(), as shown in the 
following code block:

void setup() {

}

void loop() {

}

setup() is the first function executed by the program when we press the reset button or 
power up the board. This function is executed only once and is generally responsible for 
initializing variables and peripherals.
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After setup(), the program executes loop(), which runs iteratively and forever, as 
shown in the following figure:

Figure 1.22 – Diagram of the structure

These two functions are required in all Arduino programs.

How to do it…
The steps reported in this section are valid for both Arduino Nano, Raspberry Pi Pico, and 
other compatible boards with Arduino Web Editor:

1. Connect the device to a laptop/PC through a micro-USB cable. Next, check that the 
Arduino IDE reports the name and port for the device.

2. Open the prebuilt Blink example by clicking on Examples from the left-hand side 
menu, BUILT IN from the new menu, and then Blink, as shown in the following 
screenshot:

Figure 1.23 – Built-in LED blink example



Join us on Discord!     31

Once you have clicked on the Blink sketch, the code will be visible in the  
editor area.

3. Click on the arrow near the board dropdown to compile and upload the program  
to the target device, as shown in the following figure:

Figure 1.24 – The arrow near the board dropdown will compile and flash the  
program on the target device

The console output should return Done at the bottom of the page, and the on-board LED 
should start blinking.

Join us on Discord!
Read this book alongside other users, TinyML developers/engineers and Gian. Ask 
questions, provide solutions to other readers, chat with the Gian via Ask Me Anything 
sessions and much more. 

Join Now!

https://discord.com/invite/UCJTV3A2Qp

https://discord.com/invite/UCJTV3A2Qp




2
Prototyping with 
Microcontrollers

Deploying machine learning (ML) applications on microcontrollers is cool because what 
we develop doesn't just live within our computer's brain. Instead, it can animate many 
things around us. Therefore, before diving into the ML world, let's take a glance at how to 
build basic applications on microcontrollers from a software and hardware perspective.

In this chapter, we will deal with code-debugging and present how to transmit data to the 
Arduino serial monitor. Next, we will discover how to program GPIO peripherals with 
the Arm Mbed API and use the solderless breadboard to connect external components 
such as LEDs and push-buttons. At the end of the chapter, we will see how to power the 
Arduino Nano and Raspberry Pi Pico with batteries.

The aim of this chapter is to cover the relevant microcontroller programming basics for 
the following topics in this book. 
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In this chapter, we're going to cover the following recipes:

• Code debugging 101

• Implementing an LED status indicator on the breadboard

• Controlling an external LED with the GPIO

• Turning an LED on and off with a ush-button

• Using interrupts to read the push-button state

• Powering microcontrollers with batteries

Technical requirements
To complete all the practical recipes of this chapter, we will need the following:

• An Arduino Nano 33 BLE Sense board

• A Raspberry Pi Pico board

• A micro-USB cable

• 1 x half-size solderless breadboard (30 rows and 10 columns)

• 1 x red LED

• 1 x 220 Ω resistor 

• 1 x 3 AA battery holder (Raspberry Pi Pico only)

• 1 x 4 AA battery holder (Arduino Nano only)

• 4 x AA batteries

• 1 x push-button

• 5 x jumper wires

• Laptop/PC with either Ubuntu 18.04+ or Windows 10 on x86-64

The source code and additional material are available in the Chapter02 folder on 
the GitHub repository (https://github.com/PacktPublishing/TinyML-
Cookbook/tree/main/Chapter02).

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter02
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter02
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Code debugging 101
Code debugging is a fundamental process of software development to uncover errors  
in code.

This recipe will show how to perform print debugging on an Arduino Nano and 
Raspberry Pi Pico by transmitting the following strings to the serial terminal: 

• Initialization completed: Once we have completed the initialization  
of the serial port

• Executed: After every 2 seconds

The following Arduino sketch contains the code referred to in this recipe:

• 01_printf.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter02/ArduinoSketches/01_printf.ino

Getting ready
All programs are prone to bugs, and print debugging is a basic process that prints 
statements on the output terminal to give insight into the program execution, as shown  
in the following example:

int func (int func_type, int a) {

  int ret_val = 0;

  switch(func_type){

    case 0:

      printf("FUNC0\n");

      ret_val = func0(a)

      break;

    default:

      printf("FUNC1\n");

      ret_val = func1(a);

  }

  return ret_val;

}

To get ready with this first recipe, we only need to know how the microcontroller can send 
messages on the serial terminal.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/01_printf.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/01_printf.ino
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The Arduino programming language offers a similar function to printf(), the 
Serial.print() function.

This function can send characters, numbers, or even binary data from the microcontroller 
board to our computer through the serial port, commonly called UART or USART. You 
can refer to https://www.arduino.cc/reference/en/language/functions/
communication/serial/print/ for the complete list of input arguments.

How to do it...

Note
The code reported in this recipe is valid for both the Arduino Nano and 
Raspberry Pi Pico. The Arduino IDE, in fact, will compile the code accordingly 
with the selected platform in the device drop-down menu.

Open the Arduino IDE and create a new empty project by clicking on Sketchbook 
from the leftmost menu (EDITOR) and then click on NEW SKETCH, as shown in the 
following figure:

Figure 2.1 – Click on the NEW SKETCH button to create a new project

As we saw in Chapter 1, Getting Started with TinyML, all sketches require a file containing 
the setup() and loop() functions.

https://www.arduino.cc/reference/en/language/functions/communication/serial/print/
https://www.arduino.cc/reference/en/language/functions/communication/serial/print/
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The following steps will show what to write in these functions to implement our print 
debugging recipe:

1. Initialize the UART baud rate in the setup() function and wait until the 
peripheral is open:

void setup() {

  Serial.begin(9600);

  while (!Serial);

In contrast to the standard C library printf function, the Serial.print() 
function requires initialization before transmitting data. Therefore, we initialize the 
peripheral with the Arduino Serial.begin() function, which only requires the 
baud rate as an input argument. The baud rate is the data transmission rate in bits 
per second, and it is set to 9600 bps.

However, we can't use the peripheral immediately after the initialization because we 
should wait until it is ready to transmit. So, we use while(!Serial) to wait until 
the serial communication is open.

2. Print Initialization completed after Serial.begin() in the setup() 
function:

  Serial.print("Initialization completed\n");

}

We transmit the string Initialization completed with  
Serial.print("Initialization completed\n") to report the 
completion of the initialization.

3. Print Executed every 2 seconds in the loop() function:

void loop() {

  delay(2000);

  Serial.print("Executed\n");

}      

Since the loop() function is called iteratively, we use the Arduino's delay() 
function to pause the program execution for 2 seconds. delay() accepts the 
amount of time in milliseconds (1 s = 1000 ms) as an input argument.

Now, make sure the device is plugged into your computer through the micro-USB cable.
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If the device is recognized, we can open the serial monitor by clicking on Monitor from 
the Editor menu. From there, we will see any data transmitted by the microcontroller 
through the UART peripheral. However, before any communication starts, ensure the 
serial monitor uses the same baud rate as the microcontroller peripheral (9600), as shown 
in the following figure:

Figure 2.2 – The serial monitor must use the same baud rate as the UART's peripheral

With the serial monitor open, we can click on the arrow near the device drop-down menu 
to compile and upload the program to the target platform. Once the sketch has been 
uploaded, the serial monitor will receive the Initialization completed and Executed 
messages, as shown in the following screenshot:

Figure 2.3 – Expected output on the serial monitor

As we can see from the serial monitor output, Initialization completed is printed once 
because the setup() function is just called when starting the program.
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There's more
Print debugging is a simple debugging approach, but it has significant disadvantages with 
the increase of software complexity, such as the following:

• Needing to re-compile and flash the board every time we add or move Serial.
print().

• Serial.print() costs in terms of program memory footprint.

• We could make mistakes reporting the information (for example, using print to 
report an unsigned int variable that is actually signed).

We will not cover more advanced debugging in this book, but we recommend looking 
at serial wire debug (SWD) debuggers (https://developer.arm.com/
architectures/cpu-architecture/debug-visibility-and-trace/
coresight-architecture/serial-wire-debug) to make this process less 
painful. SWD is an Arm debug protocol for almost all Arm Cortex processors that you 
can use to flash the microcontroller, step through the code, add breakpoints, and so on 
with only two wires. 

Implementing an LED status indicator on the 
breadboard
We have the chance to interact with the world around us with microcontrollers. For 
example, we can get data from sensors or perform physical actions, such as turning on  
and off an LED or moving an actuator.

In this recipe, we will learn how to connect external components with the microcontroller 
by building the following electronic circuit on the breadboard:

Figure 2.4 – LED power status indicator circuit

https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug
https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug
https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug
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The preceding circuit uses a red LED to indicate whether the microcontroller is plugged 
into the power.

Getting ready
When connecting external components to the microcontroller, we mean physically joining 
two or more metal connectors together. Although we could solder these connectors, it is 
not usual for prototyping because it is not quick and straightforward.

Therefore, this Getting ready section aims to present a solderless alternative to connect our 
components effortlessly.

Making contacts directly with the microcontroller's pins can be extremely hard for the 
tiny space between each pin. For example, considering the RP2040 microcontroller, 
the pin space is roughly 0.5 mm since the chip size is 7x7 mm. Therefore, it would be 
practically impossible to connect any of our components safely since most terminals have 
a wire diameter of ~1 mm.

For this reason, our platforms provide alternative points of contact with wider spacing on 
the board. These contact points on the Arduino Nano and Raspberry Pi Pico are the two 
rows of pre-drilled holes located at the platform's edge.

The simplest way to know the correspondence between these contacts and the 
microcontroller pins is to refer to the datasheet of the microcontroller boards. Hardware 
vendors usually provide the pinout diagram to note the pins' arrangement and 
functionality.

For example, the following list reports the links to the Arduino Nano and Raspberry Pi 
Pico pinout diagrams:

• Arduino Nano: 

https://content.arduino.cc/assets/Pinout-NANOsense_latest.
pdf

• Rasberry Pi Pico: 

https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.
pdf

On top of these pre-drilled holes, which often come with a 2.54 mm spacing, we can 
solder a header to insert and connect the electronic components easily.

The header can be either a male (pin header) or a female connector (socket header),  
as shown in the following figure:

https://content.arduino.cc/assets/Pinout-NANOsense_latest.pdf
https://content.arduino.cc/assets/Pinout-NANOsense_latest.pdf
https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf
https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf
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Figure 2.5 – Male header versus female header  
(image from https://en.wikipedia.org/wiki/Pin_header)

Important Note
We recommend buying devices with pre-soldered male headers if you are not 
familiar with soldering or just want a ready-to-go solution.

As we have seen, the boards provide a way to connect the external components with the 
microcontroller. However, how can we attach other electrical elements to build a complete 
electronic circuit?

Prototyping on a breadboard
The breadboard is a solderless prototyping platform to build circuits by pushing the 
device's pins in a rectangular grid of metal holes:

Figure 2.6 – Solderless breadboard
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As shown in the previous figure, breadboards provide two connecting areas for our 
components:

• Bus rails are usually located on both sides of the breadboard and consist of two 
columns of holes identified with the symbols + and – as shown in the following 
diagram:

Figure 2.7 – Bus rails labeled with + and - on both sides of the breadboard
All the holes of the same column are internally connected. Therefore, we will have 
the same voltage through all its columns when applying a voltage to whatever hole.

Since bus rails are beneficial for having reference voltages for our circuits, we should 
never apply different voltages on the same bus column.

 � Terminal strips are located in the central area of the breadboard and join only the 
holes of the same row so that the following occurs:

 � Holes on the same row have the same voltage.

 � Holes on the same column might have a different voltage.

However, since we typically have a notch running parallel in the middle of  
the breadboard, we have two different terminal strips per row, as shown in the 
following figure:
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Figure 2.8 – Terminal strips are located in the central area of the breadboard

We can place several devices on the breadboard and connect them through jumper wires.

Note
The size of a breadboard is defined by the number of rows and columns in the 
terminal area. In our case, we will always refer to a half-sized breadboard with 
30 rows and 10 columns.

How to do it...
Before building any circuits, unplug the micro-USB cable from the microcontroller board 
to remove the possibility of unintentionally damaging any components. 

Once we have disconnected the board from the power, follow the following steps to build 
the circuit to turn the LED on when the platform is plugged into the power:

1. Put the microcontroller board on the breadboard:

Figure 2.9 – Vertically mount the microcontroller board between the left and right terminal strips
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Since we have a notch running parallel, it is safe to put the platforms in this way 
because the left and right pin headers touch two different terminal strips.

2. Use two jumper wires to connect the 3.3 V and GND pins of the microcontroller 
board with the + and - bus rails:

Figure 2.10 – Use the jumper wires to connect the 3.3 V and GND to the + and - bus rails
It is important to note that all holes of the bus rails will have 3.3 V and GND, 
respectively, only when the microcontroller is connected to the power.

3. Insert the LED pins on two terminal strips:

Figure 2.11 – Insert the LED on the breadboard
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In the preceding figure, we insert the longer LED terminal in (H, 24) and the 
shorter one in (H, 25). Do not invert the longer and shorter terminals because then 
the LED won't turn on.

4. Place the 220 Ω resistor in series with the LED:

Figure 2.12 – Place the resistor in series with the LED
The color bands of the resistor can be determined through the Digikey web 
tool (https://www.digikey.com/en/resources/conversion-
calculators/conversion-calculator-resistor-color-code). For 
example, a 220Ω resistor with five or six bands is encoded with the following colors:

 � First band: red (2)

 � Second band: red (2)

 � Third band: black (0)

 � Fourth band: black (1)

As reported in the circuit presented at the beginning of this recipe, one terminal  
of the resistor should touch the shorter LED pin. In our case, we insert one terminal 
in (H, 25). The remaining terminal of the resistor goes in whichever unused 
terminal strip. In our case, we insert this terminal in (H, 28). 

https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-resistor-color-code
https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-resistor-color-code
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5. Close the circuit by connecting the + bus rail (3.3 V) to the longer LED pin and  
the - bus rail (GND) to the resistor terminal:

Figure 2.13 – Close the circuit by connecting 3.3 V and GND
The previous figure shows how to connect the two remaining jumper wires used 
to close the circuit. One jumper wire connects the + bus rail with the longer LED 
terminal (H, 24) while the other one connects the - bus rail with the resistor (H, 28). 

Now, the LED should emit light whenever you plug the microcontroller into the power 
with the micro-USB cable.

Controlling an external LED with the GPIO
Nowadays, LEDs are everywhere, particularly in our houses, because they use less energy 
than older lights for the same luminous intensity. However, the LEDs considered for 
our experiments are not light bulbs but through-hole LEDs for rapid prototyping on the 
breadboard.

In this recipe, we will discover how to build a basic circuit with an external LED and 
program the GPIO peripheral to control its light.

The following Arduino sketch contains the code referred to in this recipe:

• 03_gpio_out.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter02/ArduinoSketches/03_gpio_out.ino

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/03_gpio_out.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/03_gpio_out.ino
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Getting ready
To implement this recipe, we need to know how the LED works and how to program the 
microcontroller GPIO peripheral in output mode.

LED stands for Light-Emitting Diode and is a semiconductor component that emits light 
when the current flows through it.

A through-hole LED is made of the following: 

• A head of transparent material from where the light comes. The head can be of 
different diameters, but typically comes in 3mm, 5mm, and 10mm sizes.

• Two legs (leads) of different lengths to identify the positive (anode) from the 
negative (cathode) terminal. The anode is the longer lead.

The following diagram shows the basic structure of a through-hole LED and its symbolic 
representation in an electronic circuit.

Figure 2.14 – LED with symbolic representation

As mentioned, the LED emits light when the current flows through it. However, in 
contrast to the resistors, the current flows only in one direction, specifically from the 
anode to the cathode. This current is commonly called forward current (If).

The brightness of the LED is proportional to If, so the higher it is, the brighter it will 
appear.

The LED has a maximum operating current that we must not exceed to avoid breaking  
it instantly. For standard through-hole 5 mm LEDs, the maximum current is typically  
20 mA, so values between 4 mA and 15 mA should be enough to see the LED emitting  
the light.
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To allow the current to flow, we need to apply a specific voltage to the terminals' LED, 
called forward voltage (Vf). We define the Vf as:

We report the typical Vf range for some LED colors in the following table:

Figure 2.15 – Typical LED forward voltage

From the preceding table, we can observe the following about the forward voltage range:

• It depends on the color.

• It is narrow and less than the typical 3.3 V required to power a microcontroller in 
most cases.

From these observations, three questions come into mind:

• First, how can we apply the forward voltage on the LED terminals since we typically 
only have 3.3 V from the microcontroller?

• What happens if we apply a voltage lower than the minimum Vf?

• What happens if we apply a voltage higher than the maximum Vf?

The answers rely on the following physical relationship between the voltage and current of 
the LED: 

𝑉𝑉𝑓𝑓 = 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑉𝑉𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
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Figure 2.16 – Voltage-current (VI) characteristic of LED

From the previous chart where the x and y axes report the voltage and current, we can 
deduce the following:

• If we applied a voltage much lower than Vf to the LED, the LED would not turn on 
because the current would be low.

• If we applied a voltage much higher than Vf on the LED, the LED would be 
damaged because the current would exceed the 20 mA limit.

Therefore, fixing the voltage at the required operating Vf is crucial to ensure that the 
device works and is not damaged.

The solution is simple and only requires a resistor in series with the LED, as shown in the 
following figure:

Figure 2.17 – The resistor in series with the LED limits the current
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At this point, it should be clear why we included the resistor in the circuit of the previous 
recipe. Since the LED has a fixed voltage drop when it emits the light (Vf), the resistor 
limits the current at the value we want, such as 4 mA–15 mA. Therefore, having the 
LED current in the acceptable range means that the Vf does not fall out of the expected 
operating range.

We can calculate the resistor's value using the following formula:

Where:

• Vf is the forward voltage.

• If is the forward current.

• R is the resistance.

The forward voltage/current and LED brightness information is generally available in the 
LED datasheet.

Now, let's see how we can control the status of this device with the GPIO peripheral.

Introducing the GPIO peripheral
General-purpose input/output (GPIO) is the most common and versatile peripheral on 
microcontrollers.

As the name suggests, GPIO does not have a fixed functionality. Instead, its primary 
function is to provide (output) or read (input) digital signals (1 or 0) through the external 
pins, commonly called either GPIO, IO, or GP.

A microcontroller can integrate several GPIO peripherals, where each one can control  
a dedicated pin of the integrated chip.

GPIO has similar behavior to std::cout and std::cin of the C++ iostream library 
but with the difference that it writes and reads fixed voltages rather than characters.

The commonly applied voltages for the logical 1 and 0 levels are as follows:

𝑅𝑅 =
𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑓𝑓

𝐼𝐼𝑓𝑓
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Figure 2.18 – Relation between logical levels and voltages

The LED blinking is a typical example of configuring the GPIO peripheral in output mode 
to supply either 3.3 V (1) or 0 V (0) programmatically.

There are two ways to connect the LED with the GPIO pin, and the direction of the 
current makes them different. The first way is current sourcing, where the current flows 
out of the microcontroller board. To do so, we need to do the following:

• Connect the LED anode to the GPIO pin. 

• Connect the LED cathode to the resistor in the series.

• Connect the remaining resistor terminal to GND.

The following circuit shows how to drive an LED with a current sourcing circuit:

Figure 2.19 – Current sourcing. The current goes out of the microcontroller board

From the preceding circuit, we can observe that the GPIO pin should supply the logical 
level 1 to turn on the LED.
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The second and opposite way is current sinking, where the current flows into the 
microcontroller board. In this case, we need to do the following:

• Connect the LED cathode to the GPIO pin. 

• Connect the LED anode to the resistor in series.

• Connect the remaining resistor terminal to 3.3 V.

As we can observe from the following circuit, the GPIO pin should supply the logical  
level 0 to turn on the LED:

Figure 2.20 – Current sinking. The current goes into the microcontroller board

Whatever solution we adopt, it is essential to keep in mind that the pin has limits on the 
maximum current, which can be different depending on its direction. For example, the 
Arduino Nano has a maximum output current of 15 mA and a maximum input current  
of 5 mA. So, when designing the circuit to drive the LED, we should always consider these 
limitations for correctly operating and not damaging the device.

How to do it...
Disconnect the microcontroller boards from the power and keep the LED and resistor 
on the breadboard as in the previous recipe. However, unplug all the jumper wires except 
the one connected to the - bus rail (GND). The following diagram shows what you should 
have on the breadboard:
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Figure 2.21 – We keep the microcontroller board, LED, and resistor from the Implementing an LED 
status indicator on the breadboard recipe

Since the LED cathode is connected to the terminal resistor, the LED will be driven by a 
current sourcing circuit. 

The following steps will show how to control the LED light through the GPIO peripheral:

1. Choose the GPIO pin to drive the LED. The following table reports our choice:

Figure 2.22 – GPIO pin selected for driving the LED
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2. Connect the LED anode to the GPIO pin with a jumper wire:

Figure 2.23 – Connect the LED anode to the GPIO pin
On the Arduino Nano, we use a jumper wire to connect (J, 6) with (J, 24). On the 
Raspberry Pi Pico, we use a jumper wire to connect (J, 12) with (J, 24).

3. Connect the terminal resistor to GND:

Figure 2.24 – Connect the resistor to GND
On both the Arduino Nano and Raspberry Pi Pico, we connect (J, 28) with  
the - bus rail.

The 220Ω resistor imposes an LED current of ~5 mA, which is below the maximum 
20 mA LED current and below the maximum output GPIO current, as reported in 
the following table:
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Figure 2.25 – Max GPIO current (sourcing) on the Arduino Nano and Raspberry Pi Pico
Once the circuit is ready, we can focus on the GPIO programming.

4. Open the Arduino IDE and create a new sketch. Declare and initialize a global 
mbed::DigitalOut object with the pin name used for driving the LED.

For the Arduino Nano, we have the following:
mbed::DigitalOut led(p23); 

And this for the Raspberry Pi Pico:
mbed::DigitalOut led(p22); 

Mbed, or rather Mbed OS (https://os.mbed.com/), is a real-time 
operating system (RTOS) specifically for Arm Cortex-M processors, which offers 
functionalities typical of a canonical OS and drivers to control microcontroller 
peripherals. All programs on the Arduino Nano 33 BLE Sense board and Raspberry 
Pi Pico are built on top of this tiny operating system. In this recipe, we use the 
mbed::DigitalOutput object (https://os.mbed.com/docs/mbed-os/
v6.15/apis/digitalout.html) from Mbed OS to interface with the GPIO 
peripheral in output mode. The peripheral initialization requires the GPIO pin 
(PinName) connected to the LED. PinName always starts with the letter p, 
followed by the pin number.

On the Arduino Nano, the pin number is obtained from the y number reported in 
the pin label P<x>.<y>. Therefore, PinName is p23.

On the Raspberry Pi Pico, the pin number is obtained from the y number reported 
in the label GPy. Therefore, PinName is p22.

5. Set led to 1 for turning on the LED in the loop() function:

void loop() {

  led = 1;

}

Compile the sketch and upload the program to the microcontroller.

https://os.mbed.com/
https://os.mbed.com/docs/mbed-os/v6.15/apis/digitalout.html
https://os.mbed.com/docs/mbed-os/v6.15/apis/digitalout.html
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Turning an LED on and off with a push-button
In contrast to a PC where the keyboard, mouse, or even a touchscreen facilitates human 
interactions with the software applications, a physical button represents the easiest way  
for a user to interact with a microcontroller.

This recipe will teach us how to program the GPIO to read the status of a push-button 
(pushed or released) to control the LED light.

The following Arduino sketch contains the code referred to in this recipe:

• 04_gpio_in_out.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter02/ArduinoSketches/04_gpio_in_out.ino

Getting ready
To get ready for this recipe, we need to know how this device works and program the 
GPIO peripheral in input mode.

The push-button is a type of button used with microcontrollers, and it has boolean 
behavior since its state can either be pushed (true) or released (false).

From an electronics point of view, a push-button is a device that makes (a.k.a. short) or 
breaks (a.k.a. open) the connection between two wires. When we press the button, we 
connect the wires through a mechanical system, allowing the current to flow. However, it 
is not like a standard light switch that keeps the wires connected when released. When we 
don't apply pressure to the button, the wires disconnect, and the current stops flowing.

Although this device has four metal legs, it is a two-terminal device because the contacts 
on the opposite side (1, 4 and 2, 3) are connected, as shown in the following figure:

Figure 2.26 – Push-button representation

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/04_gpio_in_out.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/04_gpio_in_out.ino
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When building a circuit with this component, the legs on the same side (1,2 or 4,3 in the 
preceding figure) are responsible for connecting two points. These two points will have the 
same voltage when the push-button is pressed.

The state of a push-button can be read with the GPIO peripheral in input mode. When 
configuring the GPIO in input mode, the peripheral reads the applied voltage on the pin 
to infer the logical level. From this value, we can guess whether the button is pressed. 

In the following diagram, the voltage on the GPIO pin is GND when we press the button. 
However, what is the voltage when the button is released?

Figure 2.27 – What is the voltage on the GPIO pin when we release the push-button?

Although the pin could only assume two logical levels, this could not be true in some 
input mode circumstances. A third logical level called floating (or high impedance) 
could occur if we do not take circuit precautions. When the floating state occurs, the pin's 
logical level is undefined because the voltage fluctuates between 3.3 V and GND. Since the 
voltage is not constant, we cannot know whether the push-button is pressed. To prevent 
this problem, we must include a resistor in our circuit to always have a well-defined logical 
level under all conditions.

Depending on what logical level we want in the pushed state, the resistor can be as follows:

• Pull-up: The resistor connects the GPIO pin to the 3.3 V. Thus, the GPIO pin reads 
LOW in the pushed state and HIGH in the released state.

• Pull-down: The resistor connects the GPIO pin to GND in contrast to the pull-up 
configuration. Thus, the GPIO pin reads the logical level HIGH in the pushed state 
and LOW in the released state.
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The following diagram shows the difference between the pull-up and pull-down 
configurations:

Figure 2.28 – Pull-up versus pull-down configurations

Typically, a 10 K resistor should be okay for both cases. However, most microcontrollers 
offer an internal and programmable pull-up resistor so the external one is often not 
needed.

How to do it...
Keep all the components on the breadboard. The following steps will show what to change 
in the previous sketch to control the LED status with the push-button:

1. Choose the GPIO pin for reading the push-button state. The following table reports 
our choice.

Figure 2.29 – GPIO pin used to read the push-button state

2. Mount the push-button between the breadboard's left and right terminal strips:
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Figure 2.30 – The push-button is mounted between the terminal strips 21 and 23
As we can observe from the preceding diagram, we use terminal strips not 
employed by other devices.

3. Connect the push-button to the GPIO pin and GND:

Figure 2.31 – The push-button is only connected to the GPIO pin and GND
The floating state will not occur because we use the microcontroller pull-up resistor.
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4. Open the sketch developed in the previous recipe. Declare and initialize a global 
mbed::DigitalIn object with the pin name used for the push-button.

For the Arduino Nano:
mbed::DigitalIn button(p30);

And this for the Raspberry Pi Pico:
mbed::DigitalIn button(p10);

mbed::DigitalIn (https://os.mbed.com/docs/mbed-os/v6.15/
apis/digitalin.html) is used to interface with the GPIO peripheral in input 
mode. The initialization only requires the GPIO pin (PinName) connected to the 
push-button.

5. Set the button mode to PullUp in the setup() function:

void setup() {

  button.mode(PullUp);

}

The preceding code enables the microcontroller's internal pull-up resistor.
6. Turn on the LED when the push-button is LOW (0) in the loop() function:

void loop() {

  led = !button;

}

We just need to set the led object to the opposite value returned by button to 
light up the LED when the push-button is pressed.

Compile the sketch and upload the program to the microcontroller.

Tip
When the push-button is pressed, the switch could generate spurious logical-
level transitions due to the mechanical nature of the component. This issue 
is called button bouncing because the switch response bounces between 
HIGH and LOW for a short time. You may consider adopting a switch 
debouncing algorithm (for example, https://os.mbed.com/teams/
TVZ-Mechatronics-Team/wiki/Timers-interrupts-and-
tasks) to prevent the generation of multiple transitions.

https://os.mbed.com/docs/mbed-os/v6.15/apis/digitalin.html
https://os.mbed.com/docs/mbed-os/v6.15/apis/digitalin.html
https://os.mbed.com/teams/TVZ-Mechatronics-Team/wiki/Timers-interrupts-and-tasks
https://os.mbed.com/teams/TVZ-Mechatronics-Team/wiki/Timers-interrupts-and-tasks
https://os.mbed.com/teams/TVZ-Mechatronics-Team/wiki/Timers-interrupts-and-tasks


Using interrupts to read the push-button state     61

Using interrupts to read the push-button state
The previous recipe explained how to read digital signals with the GPIO peripheral. 
However, the proposed solution is inefficient because the CPU wastes cycles waiting for 
the button to be pressed while it could do something else in the meantime. Furthermore, 
this could be a scenario where we would keep the CPU in low-power mode when there is 
nothing else to do.

This recipe will teach us how to read the push-button state efficiently by using the 
interrupts on the Arduino Nano.

The following Arduino sketch contains the code referred to in this recipe:

• 05_gpio_interrupt.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter02/ArduinoSketches/05_gpio_interrupt.ino

Getting ready
Let's prepare this recipe by learning what an interrupt is and what Mbed OS API we can 
use to read the push-button efficiently.

An interrupt is a signal that temporarily pauses the main program to respond to an event 
with a dedicated function, called an interrupt handler or interrupt service routine 
(ISR). Once the ISR ends the execution, the processor resumes the main program from 
the point it was left at, as shown in the following diagram:

Figure 2.32 – Interrupt pauses the main program temporarily

The interrupt is a powerful mechanism to save energy because the CPU could enter the 
sleep state and wait for an event before starting the computation.

A microcontroller has several interrupt sources, and for each one, we can program a 
dedicated ISR.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/05_gpio_interrupt.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/05_gpio_interrupt.ino
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Although the ISR is a function, there are limitations to its implementation:

• It does not have input arguments.

• It does not return a value. Therefore, we need to use global values to report status 
changes.

• It must be short to not steal too much time from the main program. We want to 
remind you that the ISR is not a thread since the processor can only resume the 
computation when the ISR finishes.

For GPIO peripherals in input mode, we can use the mbed::InterruptIn  
(https://os.mbed.com/docs/mbed-os/v6.15/apis/interruptin.html) 
object to trigger an event whenever the logical level on the pin changes:

Figure 2.33 – Rising interrupt versus falling interrupt

As we can observe from the preceding diagram, mbed::InterruptIn can trigger 
interrupts when the logical level on the pin goes from LOW to HIGH (rising interrupts)  
or HIGH to LOW (falling interrupt).

How to do it...
Open the sketch built in the previous recipe and follow these steps to turn on and off the 
LED with the GPIO interrupt:

1. Define and initialize the mbed::InterruptIn object with the PinName of the 
GPIO pin connected to the push-button.

For the Arduino Nano:
mbed::InterruptIn button(p30);

For the Raspberry Pi Pico:
mbed::InterruptIn button(p10);

The mbed::DigitalIn object is not required anymore since 
mbed::InterruptIn also controls the interface with the GPIO peripheral in 
input mode.

https://os.mbed.com/docs/mbed-os/v6.15/apis/interruptin.html
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2. Write an ISR for handling the interrupt request on the rising edge (LOW to HIGH) 
of the input signal:

void rise_ISR() {

  led = 0;

}

The LED is turned off when the preceding ISR is called (led = 0).

Next, write an ISR for handling the interrupt request on the falling edge  
(HIGH to LOW) of the input signal:

void fall_ISR() {

  led = 1;

}

The LED switches on when the preceding ISR is called (led = 1).
3. Initialize button in the setup() function:

void setup() {

  button.mode(PullUp);

  button.rise(&rise_ISR);

  button.fall(&fall_ISR);

}

We configure the mbed::InterruptIn object by doing the following:

 � Enabling the internal pull-up resistor (button.mode(PullUp))

 � Attaching the ISR function to call when the rising interrupt occurs  
(button.rise(&rise_ISR))

 � Attaching the ISR function to call when the falling interrupt occurs  
(button.fall(&fall_ISR))

4. Replace the code in the loop() function with delay(4000):

void loop() {

  delay(4000);

}

In theory, we could leave the loop() function empty. However, we recommend 
calling delay() when nothing has to be done because it can put the system in 
low-power mode.

Compile the sketch and upload the program to the microcontroller.
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Powering microcontrollers with batteries
For many TinyML applications, batteries could be the only power source for our 
microcontrollers.

In this final recipe, we will learn how to power microcontrollers with AA batteries.

The following Colab notebook contains the code referred to in this recipe:

• 06_estimate_battery_life.ipynb: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter02/ColabNotebooks/06_estimate_battery_life.
ipynb

Getting started
Microcontrollers don't have a built-in battery, so we need to supply an external one to 
make the device work when it is not connected through the micro-USB cable.

To get ready for this recipe, we need to know what types of batteries we need and how we 
can use them correctly to supply power.

Batteries are sources of electric power and have a limited energy capacity. The energy 
capacity (or battery capacity) quantifies the energy stored and is measured in milli-
ampere-hour (mAh). Therefore, a higher mAh implies a longer battery life.

The following table reports some commercial batteries that find applicability with 
microcontrollers:

Figure 2.34 – Suitable commercial batteries for microcontrollers

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ColabNotebooks/06_estimate_battery_life.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ColabNotebooks/06_estimate_battery_life.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ColabNotebooks/06_estimate_battery_life.ipynb
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The battery selection depends on the required microcontroller voltage and other factors 
such as energy capacity, form factor, and operating temperature.

As we can observe from the preceding table, the AA battery provides a higher capacity, 
but it supplies 1.5 V, typically insufficient for microcontrollers.

Therefore, how can we power microcontrollers with AA batteries?

In the following subsections, we will show standard techniques to either increase the 
supplied voltage or the energy capacity.

Increasing the output voltage by connecting batteries in series
When connecting batteries in series, the positive terminal of one battery is connected to 
the negative terminal of the other one, as shown in the following figure:

Figure 2.35 – Batteries in series

Important Note
This approach will not extend the battery capacity but just the supplied voltage.

The new supplied voltage (𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 ) is as follows:

𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏 ∙ 𝑁𝑁 

Where N is the number of connected batteries in series.

For example, since one AA battery supplies 1.5 V for 2400 mAh, we could connect two 
AA batteries in series to produce 3.0 V for the same energy capacity.

However, if the battery capacity is not enough for our application, how can we increase it?
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Increasing the energy capacity by connecting batteries in parallel
When connecting batteries in parallel, the positive terminals of the batteries are tied 
together with one wire. The same applies to the negative terminals, which are joined 
together as shown in the following figure:

Figure 2.36 – Batteries in parallel

Important Note
This approach will not increase the output voltage but just the battery capacity.

The new battery capacity (𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛 ) is as follows:

𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏 ∙ 𝑁𝑁 
Where N is the number of connected batteries in parallel.

For example, since one AA battery has a battery capacity of 2400 mAh, we could connect 
two AA batteries in parallel to increase the battery capacity by two times.

Now that we know how to connect multiple batteries together to get the desired output 
voltage and energy capacity, let's see how we can use them to power the microcontrollers.

Connecting batteries to the microcontroller board
Microcontrollers have dedicated pins for supplying power through external energy sources, 
such as batteries. These pins have voltage limits, commonly reported in the datasheet.

On the Arduino Nano, the external power source is supplied through the Vin pin. The 
Vin input voltage can range from 5 V–21 V.
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On the Raspberry Pi Pico, the external power source is supplied through the VSYS pin. 
The VSYS input voltage can range from 1.8 V – 5.5 V.

On both platforms, the onboard voltage regulator will convert the supplied voltage to 3.3 V.

How to do it...
Disconnect the Arduino Nano and Raspberry Pi Pico from the micro-USB and keep all 
the components on the breadboard.

The battery holder considered for this recipe connects the AA batteries in series. We 
recommend not inserting the batteries in the battery holder yet. The batteries should only 
be inserted when the electric circuit is completed.

The following steps will show how to power the Arduino Nano and Raspberry Pi Pico 
with batteries:

1. Connect the positive (red) and negative (black) wires of the battery holder to  
the + and – bus rails respectively:

Figure 2.37 – Connect the battery holder to the bus rails
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2. The Arduino Nano and Raspberry Pi Pico have different voltage limits for the 
external power source. Therefore, we cannot use the same number of AA batteries 
on both platforms. In fact, three AA batteries are enough for the Raspberry Pi 
Pico but not for the Arduino Nano. In contrast, four AA batteries are enough for 
the Arduino Nano but beyond the voltage limit on the Raspberry Pi Pico. For this 
reason, we use a 4 x AA battery holder for the Arduino Nano to supply 6 V and  
a 3 x AA battery holder for the Raspberry Pi Pico to supply 4.5 V.

3. Connect the external power source to the microcontroller board, as shown in the 
following diagram:

Figure 2.38 – Connect the bus rails to the microcontroller power pin and GND
As you can observe from the preceding figure, VIN (Arduino Nano) and VSYS 
(Raspberry Pi Pico) are connected to the positive battery holder terminal through 
the + bus rail.

4. Insert the batteries in the battery holder:

 � 4 x AA batteries for the Arduino Nano

 � 3 x AA batteries for the Raspberry Pi Pico

The LED application should now work again.

However, one thing we might be curious about is how can we evaluate the lifetime of a 
battery-powered application? 
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There's more
Once we have chosen the battery for the microcontroller, we can estimate its lifetime with 
the following formula:

𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵
𝐼𝐼𝐵𝐵  

Where:

Figure 2.39 – Physical quantities of the battery lifetime estimate formula

The following Python code calculates the battery life in hours and days:

battery_cap_mah = 2400

i_load_ma = 1.5

 

battery_life_hours = battery_cap_mah / i_load_ma

battery_life_days = battery_life_hours / 24

 

print("Battery life:", battery_life_hours,"hours,", battery_
life_days, "days")

The preceding code estimates the battery life for the case when the battery capacity 
(battery_cap_mah) is 2400 mAh, and the load current (i_load_ma) is 1.5 mA.

The expected output is as follows:

Figure 2.40 – Expected output from the battery life estimator

Although the formula above is an estimation and valid under ideal conditions, it is 
enough to understand how long the system could last. A better model could include  
other factors such as battery self-discharge and temperature.





3 
Building a Weather 

Station with 
TensorFlow Lite for 

Microcontrollers
Nowadays, it is straightforward to get the weather forecast with our smartphones, laptops, 
and tablets, thanks to internet connectivity. However, have you ever thought of what you 
would do if you had to track the weather in a remote region with no internet access?

This chapter will teach us how to implement a weather station with machine learning 
(ML) using the temperature and humidity of the last three hours.

In this chapter, we will focus on dataset preparation and show how to acquire historical 
weather data from WorldWeatherOnline. After that, we will explain how to train and test 
a model with TensorFlow (TF). In the last part, we will deploy the model on an Arduino 
Nano and a Raspberry Pi Pico with TensorFlow Lite for Microcontrollers (TFLu) and 
build an application to predict whether it will snow.

The goal of this chapter is to guide you through all the development stages of a TF-based 
application for microcontrollers and explain how to acquire temperature and humidity 
sensor data.
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In this chapter, we're going to implement the following recipes:

• Importing weather data from WorldWeatherOnline

• Preparing the dataset

• Training the model with TF

• Evaluating the model's effectiveness

• Quantizing the model with TFLite converter

• Using the built-in temperature and humidity sensor on an Arduino Nano

• Using the DHT22 sensor with a Raspberry Pi Pico

• Preparing the input features for the model inference

• On-device inference with TFLu

Technical requirements
To complete all the practical recipes of this chapter, we will need the following:

• An Arduino Nano 33 Sense board

• A Raspberry Pi Pico board

• A micro-USB cable

• 1 x half-size solderless breadboard (Raspberry Pi Pico only)

• 1 x AM2302 module with the DHT22 sensor (Raspberry Pi Pico only)

• 5 x jumper wires (Raspberry Pi Pico only)

• Laptop/PC with either Ubuntu 18.04+ or Windows 10 on x86-64

The source code and additional material are available in the Chapter03 folder of the 
repository for this book (https://github.com/PacktPublishing/TinyML-
Cookbook/tree/main/Chapter03).

Importing weather data from 
WorldWeatherOnline
The effectiveness of ML algorithms depends heavily on the data used for training. Hence, as 
we commonly say, the ML model is only good as the dataset. The essential requirement for a 
good dataset is that the input data must represent the problem we want to solve. Considering 
our context, we know from physics that temperature and humidity affect snow formation.

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter03
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter03
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Hence, in this recipe, we will show how to gather historical hourly temperature, humidity, 
and snowfall data to build a dataset for forecasting snow.

The following Colab file (see the Importing weather data from WorldWeatherOnline 
section in the following repository) contains the code referred to in this recipe:

• preparing_model.ipynb: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter03/ColabNotebooks/preparing_model.ipynb

Getting ready
On the internet, there are various sources from which we can gather hourly weather data, 
but most of them are not free or have limited usage.

For this recipe, WorldWeatherOnline (https://www.worldweatheronline.com/
developer/) has been our choice, which has a free trial period for 30 days and provides 
the following:

• Simple API through HTTP requests to acquire the data

• Historical worldwide weather data

• 250 weather data requests per day

Important Note
The limit on the weather data requests per day has no impact on this recipe.

You only need to sign up on the website to start fetching the data.

WorldWeatherOnline has an API called the Past Historical Weather API (https://www.
worldweatheronline.com/developer/premium-api-explorer.aspx) that 
allows us to gather historical weather conditions from July 1, 2008. 

However, we will not directly deal with its native API but use the Python package 
wwo-hist (https://github.com/ekapope/WorldWeatherOnline) to export 
the data directly to a pandas DataFrame.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://www.worldweatheronline.com/developer/
https://www.worldweatheronline.com/developer/
https://www.worldweatheronline.com/developer/premium-api-explorer.aspx
https://www.worldweatheronline.com/developer/premium-api-explorer.aspx
https://github.com/ekapope/WorldWeatherOnline
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How to do it…
Open Colab and create a new notebook. In the coding area, do the following:

1. Install the wwo-hist package:

!pip install wwo-hist

2. Import the retrieve_hist_data function from wwo-hist:

from wwo_hist import retrieve_hist_data

retrieve_hist_data is the only function required to acquire data from 
WorldWeatherOnline and can export to either pandas DataFrames or CSV files.

3. Acquire data for ten years (01-JAN-2011 to 31-DEC-2020) with an hourly 
frequency from Canazei:

frequency=1

api_key = 'YOUR_API_KEY'

location_list = [canazei]

df_weather = retrieve_hist_data(api_key,

                                location_list,

                                '01-JAN-2011',

                                '31-DEC-2020',

                                frequency,

                                location_label = False,

                                export_csv = False,

                                store_df = True) 

www-hist will export the data to df_weather, a list of pandas DataFrames.

In this step, we set the input arguments for retrieve_hist_data. Let's unpack 
all of them:

 � API key: The API key is reported in the WorldWeatherOnline subscription 
dashboard, and it should replace the YOUR_API_KEY string.

 � Location: This is the list of locations from which to acquire the weather 
data. Since we are building a dataset to forecast the snow, we should consider 
places where it snows periodically. For example, you can consider Canazei 
(https://en.wikipedia.org/wiki/Canazei), located in the north  
of Italy, where snowfall can occur at any point between December and March. 
We could also add other locations to make the ML model more generic.

https://en.wikipedia.org/wiki/Canazei
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 � Start date/End date: The start and end dates define the temporal interval in 
which to gather the data. The date format is dd-mmm-yyyy. Since we want a 
large representative dataset, we query 10 years of weather data. Therefore, the 
interval time is set to 01-JAN-2011 – 31-DEC-2020.

 � Frequency: This defines the hourly frequency. For example, 1 stands for every 
hour, 3 for every three hours, 6 for every six hours, and so on. We opt for an 
hourly frequency since we need the temperature and humidity of the last three 
hours to forecast snow.

 � Location label: Since we might need to acquire data from different locations, 
this flag binds the acquired weather data to the place. We set this option to 
False because we are only using a single location.

 � export_csv: This is the flag to export the weather data to a CSV file. We set it to 
False because we do not need to export the data to a CSV file.

 � store_df: This is the flag to export the weather data to a pandas DataFrame. We 
set it to True.

Once the weather data is retrieved, the console output will report export to canazei 
completed!.

4. Export temperature, humidity, and output snowfall to lists:

t_list = df_weather[0].tempC.astype(float).to_list()

h_list = df_weather[0].humidity.astype(float).to_list()

s_list = df_weather[0].totalSnow_cm.astype(float).to_ 
         list()

The generated df_weather[] dataset includes several weather conditions for 
each requested date and time. For example, we can find the pressure in millibars, 
cloud coverage in percentage, visibility in kilometers, and, of course, the physical 
quantities that we're interested in:

 � tempC: The temperature in degrees Celsius (°C)

 � humidity: The relative air humidity in percentage (%)

 � totalSnow_cm: Total snowfall in centimeters (cm)

In this final step, we export the hourly temperature, humidity, and snowfall in cm to 
three lists using the to_list() method.

Now, we have all we need to prepare the dataset for forecasting the snow.
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Preparing the dataset
Preparing a dataset is a crucial phase in any ML project because it has implications for the 
effectiveness of the trained model.

In this recipe, we will put into action two techniques to make the dataset more suitable 
to get a more accurate model. These two techniques will balance the dataset with 
standardization and bring the input features into the same numerical range.

The following Colab file (see the Preparing the dataset section in the following repository) 
contains the code referred to in this recipe:

• preparing_model.ipynb: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter03/ColabNotebooks/preparing_model.ipynb

Getting ready
The temperature and humidity of the last three hours are our input features. If you wonder 
why we use the last three hours' weather conditions, it is just so we have more input 
features and Increase the chance of higher classification accuracy.

To get ready for the dataset preparation, we need to know why the dataset needs to be 
balanced and why the raw input features should not be used for training. These two 
aspects will be examined in the following subsections.

Preparing a balanced dataset
An unbalanced dataset is a dataset where one of the classes has considerably more 
samples than the others. Training with an unbalanced dataset could produce a model with 
high accuracy but that's incapable of solving our problem. For example, consider a dataset 
where one of the two classes has 99% of the samples. If the network miss-classified the 
minority class, we would still have 99% accuracy, but the model would be ineffective.

Therefore, we require a balanced dataset with roughly the same input samples for each 
output category.

Balancing a dataset can be done with the following techniques:

• Acquiring more input samples for the minority class: This should be the first thing 
we do to ensure we have correctly generated the dataset. However, it is not always 
possible to collect more data, particularly when dealing with infrequent events.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
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• Oversampling the minority class: We could randomly duplicate samples from the 
under-represented class. However, this approach may increase the risk of overfitting 
the minority class if we duplicate many instances. 

• Undersampling the majority class: We could randomly delete samples from the 
over-represented class. Since this approach reduces the dataset's size, we could lose 
valuable training information.

• Generating synthetic samples for the minority class: We could develop artificially 
manufactured samples. The most common algorithm for this is Synthetic Minority 
Over-sampling Technique (SMOTE). SMOTE is an oversampling technique that 
creates new samples instead of duplicating under-represented instances. Although 
this technique reduces the risk of overfitting caused by oversampling, the generated 
synthetic samples could be incorrect near the class separation border, adding 
undesirable noise to the dataset.

As we can see, despite the variety of techniques, there is not an overall best solution to fix an 
unbalanced dataset. The method or methods to adopt will depend on the problem to solve.

Feature scaling with Z-score
Our input features exist in different numerical ranges. For example, humidity is always 
between 0 and 100, while the temperature on the Celsius scale can be negative and has a 
smaller positive numerical range than humidity.

This is a typical scenario when dealing with various physical quantities and could impact 
the effectiveness of the training.

Generally, if the input features have different numerical ranges, the ML model may not 
generalize properly because it will be influenced more by the features with more significant 
values. Therefore, the input features need to be rescaled to ensure that each input feature 
contributes equally during training. Furthermore, another benefit of feature scaling in neural 
networks is that it helps converge the gradient descent faster toward the minima.

Z-score is a common scaling technique adopted in neural networks, and it is defined with 
the following formula:

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛  =  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜  −  𝜇𝜇
𝜎𝜎  

Let's break down this formula:

• μ : the mean of the input features

• σ : the standard deviation of the input features
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Z-score can bring the input features to a similar numerical range, but not necessarily 
between zero and one.

How to do it…
Continue working on the Colab file and follow the following steps to discover how to 
balance the dataset and rescale the input features with Z-score:

1. Visualize the extracted physical measurements (temperature, humidity, and snow) 
in a 2D scatter chart. To do so, consider the snow formation only when the snowfall 
(totalSnow_cm) is above 0.5 cm:

def binarize(snow, threshold):

  if snow > threshold:

    return 1

  else:

    return 0

s_bin_list = [binarize(snow, 0.5) for snow in s_list]

cm = plt.cm.get_cmap('gray_r')

sc = plt.scatter(t_list, h_list, c=s_bin_list, cmap=cm, 
label="Snow")

plt.figure(dpi=150)

plt.colorbar(sc)

plt.legend()

plt.grid(True)

plt.title("Snow(T, H)")

plt.xlabel("Temperature - °C")

plt.ylabel("Humidity - %")

plt.show()

The preceding code generates the following scatter plot:
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Figure 3.1 – Visualization of the temperature, humidity, and snow in a 2D chart.  
Data provided by WorldWeatherOnline.com

In the preceding chart, the x-axis is the temperature, the y-axis is the humidity, and 
the black dot is the snow formation.

As you can observe from the distribution of the black dots, there are cases where the 
snow formation is reported for temperatures well above 0°C. 

To simplify the recipe, we can ignore these cases and consider 2° C as the maximum 
temperature for the snow formation.

2. Generate the output labels (Yes and No):

def gen_label(snow, temperature):

  if snow > 0.5 and temperature < 2:

    return "Yes"

  else:

    return "No"

snow_labels = [gen_label(snow, temp) for snow, temp in 
zip(s_list, t_list)]
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Since we are only forecasting snow, only two classes are needed: Yes, it snows, or No, 
it does not snow. At this scope, we convert totalSnow_cm to the corresponding 
class (Yes or No) through the gen_label() function. The mapping function 
assigns Yes when totalSnow_cm exceeds 0.5 cm and the temperature is  
below 2° C.

3. Build the dataset:

csv_header = ["Temp0", "Temp1", "Temp2", "Humi0", 
"Humi1", "Humi2", "Snow"]

df_dataset = pd.DataFrame(list(zip(t_list[:-2], t_
list[1:-1], t_list[2:], h_list[:-2], h_list[1:-1], h_
list[2:], snow_labels[2:])), columns = csv_header)

If t0 is the current time, the values stored in the dataset are as follows:

 � Temp0/Humi0: Temperature and humidity at time t = t0 - 2

 � Temp1/Humi1: Temperature and humidity at time t = t0 - 1

 � Temp2/Humi2: Temperature and humidity at time t = t0

 � Snow: Label reporting whether it will snow at time t = t0

Therefore, we just need a zip and a few indices calculations to build the dataset.
4. Balance the dataset by undersampling the majority class:

df0 = df_dataset[df_dataset['Snow'] == "No"]

df1 = df_dataset[df_dataset['Snow'] == "Yes"]

if len(df1.index) < len(df0.index):

  df0_sub = df0.sample(len(df1.index))

  df_dataset = pd.concat([df0_sub, df1])

else:

  df1_sub = df1.sample(len(df0.index))

  df_dataset = pd.concat([df1_sub, df0])

The original dataset is unbalanced because, in the selected location, it typically 
snows during the winter season, which lasts from December to March. The 
following bar chart shows that the No class represents 87% of all cases, so we  
need to apply one of the techniques shown in the Getting ready section to balance 
the dataset.
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Figure 3.2 – Distribution of the dataset samples
Since the minority class has many samples (~5000), we can randomly undersample 
the majority class so the two categories have the same number of observations.

5. Scale the input features with Z-score independently. To do so, extract all the 
temperature and humidity values:

t_list = df_dataset['Temp0'].tolist()

h_list = df_dataset['Humi0'].tolist()

t_list = t_list + df_dataset['Temp2'].tail(2).tolist()

h_list = h_list + df_dataset['Humi2'].tail(2).tolist()

You can get all the temperature (or humidity) values from the Temp0 (or Humi0) 
column and the last two records of the Temp2 (or Humi2) column.

Next, calculate the mean and standard deviation of the temperature and humidity 
input features:

t_avg = mean(t_list)

h_avg = mean(h_list)

t_std = std(t_list)

h_std = std(h_list)

print("COPY ME!")

print("Temperature - [MEAN, STD]  ", round(t_avg, 5), 
round(t_std, 5))

print("Humidity - [MEAN, STD]     ", round(h_avg, 5), 
round(h_std, 5))
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The expected output is as follows:

Figure 3.3 – Expected mean and standard deviation values 
Copy the mean and standard deviation values printed in the output log because 
they will be required when deploying the application on the Arduino Nano and 
Raspberry Pi Pico.

Finally, scale the input features with Z-score:
def scaling(val, avg, std):

  return (val - avg) / (std)

df_dataset['Temp0']=df_dataset['Temp0'].apply(lambda x: 
scaling(x, t_avg, t_std))

df_dataset['Temp1']=df_dataset['Temp1'].apply(lambda x: 
scaling(x, t_avg, t_std))

df_dataset['Temp2']=df_dataset['Temp2'].apply(lambda x: 
scaling(x, t_avg, t_std))

df_dataset['Humi0']=df_dataset['Humi0'].apply(lambda x: 
scaling(x, h_avg, h_std))

df_dataset['Humi1']=df_dataset['Humi1'].apply(lambda x: 
scaling(x, h_avg, h_std))

df_dataset['Humi2']=df_dataset['Humi2'].apply(lambda x: 
scaling(x, h_avg, h_std))

The following charts compare the raw and scaled input feature distributions: 

Figure 3.4 – Raw (left charts) and scaled (right charts) input feature distributions
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As you can observe from the charts, Z-score provides roughly the same value range  
(the x axis) for both features.

Now, the dataset is ready to be used for training our snow forecast model!

Training the ML model with TF
The model designed for forecasting the snow is a binary classifier, and it is illustrated in 
the following diagram:

Figure 3.5 – Neural network model for forecasting the snow

The network consists of the following layers:

• 1 x fully connected layers with 12 neurons and followed by a ReLU activation 
function

• 1 x dropout layer with a 20% rate (0.2) to prevent overfitting

• 1 x fully connected layer with one output neuron and followed by a sigmoid 
activation function

In this recipe, we will train the preceding model with TF.

The following Colab file (see the Training the ML model with TF section in the following 
repository) contains the code referred to in this recipe:

• preparing_model.ipynb: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter03/ColabNotebooks/preparing_model.ipynb

Getting ready
The model designed in this recipe has one input and output node. The input node 
provides the six input features to the network: the temperature and humidity for each of 
the last three hours.

The model consumes the input features and returns the probability of the class in the 
output node. Since the sigmoid function produces the output, the result is between zero 
and one and considered No when it is below 0.5; otherwise, it's Yes.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
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In general, we consider the following four sequential steps when training a neural 
network:

1. Encoding the output labels
2. Splitting the dataset into training, test, and validation datasets
3. Creating the model
4. Training the model

In this recipe, we will use TF and scikit-learn to implement them.

Scikit-Learn (https://scikit-learn.org/stable/) is a higher-level Python 
library for implementing generic ML algorithms, such as SVMs, random forests, and 
logistic regression. It is not a DNN-specific framework but rather a software library for  
a wide range of ML algorithms.

How to do it…
The following steps show how to train the model presented in the Getting ready section 
with TF:

1. Extract the input features (x) and output labels (y) from the df_dataset pandas 
DataFrame:

f_names = df_dataset.columns.values[0:6]

l_name  = df_dataset.columns.values[6:7]

x = df_dataset[f_names]

y = df_dataset[l_name]

2. Encode the labels to numerical values:

labelencoder = LabelEncoder()

labelencoder.fit(y.Snow)

y_encoded = labelencoder.transform(y.Snow)

This step converts the output labels (Yes and No) to numerical values since neural 
networks can only deal with numbers. We use scikit-learn to transform the target 
labels to integer values (zero and one). The conversion requires calling the following 
three functions:
A. LabelEncoder() to initialize the LabelEncoder module
B. fit() to identify the target integer values by parsing the output labels
C. transform() to translate the output labels to numerical values

https://scikit-learn.org/stable/
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After transform(), the encoded labels are available in y_encoded.
3. Split the dataset into train, validation, and test datasets:

# Split 1 (85% vs 15%)

x_train, x_validate_test, y_train, y_validate_test = 
train_test_split(x, y_encoded, test_size=0.15, random_
state = 1)

# Split 2 (50% vs 50%)

x_test, x_validate, y_test, y_validate = train_test_
split(x_validate_test, y_validate_test, test_size=0.50, 
random_state = 3)

The following diagram shows how we split the train, validation, and test datasets:

Figure 3.6 – The dataset is split into the train, validation, and test datasets
These three datasets are as follows:

 � Training dataset: This dataset contains the samples to train the model. The 
weights and biases are learned with these data.

 � Validation dataset: This dataset contains the samples to evaluate the model's 
accuracy on unseen data. The dataset is used during the training process to 
indicate how well the model generalizes because it includes instances not 
included in the training dataset. However, since this dataset is still used during 
training, we could indirectly influence the output model by fine-tuning some 
training hyperparameters.

 � Test dataset: This dataset contains the samples for testing the model after 
training. Since the test dataset is not employed during training, it evaluates the 
final model without bias.

From the original dataset, we assign 85% to the training dataset, 7.5% to the 
validation dataset, and 7.5% to the test dataset. With this split, the validation  
and test dataset will have roughly 1,000 samples each, enough to see if the model 
works properly.
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The dataset splitting is done with the train_test_split() function from 
scikit-learn which splits the dataset into training and test datasets. The split 
proportion is defined with the test_size (or train_size) input argument, 
representing the input dataset's percentage to include in the test (or train) split.

We call this function twice to generate the three different datasets. The first split 
generates the 85% training dataset by providing test_size=0.15. The second 
split produces the validation and test datasets by halving the 15% dataset from the 
first split.

4. Create the model with the Keras API:

model = tf.keras.Sequential()

model.add(layers.Dense(12, activation='relu', input_
shape=(len(f_names),)))

model.add(layers.Dropout(0.2))

model.add(layers.Dense(1, activation='sigmoid'))

model.summary()

The preceding code generates the following output:

Figure 3.7 – Model summary returned by model.summary()
The summary reports useful architecture information about the neural network 
model, such as the layer types, the output shapes, and the number of trainable 
weights required.

Important Note
In TinyML, it is important to keep an eye on the number of weights because it 
is related to the program's memory utilization.
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5. Compile the model:

model.compile(loss='binary_crossentropy', 
optimizer='adam', metrics=['accuracy'])

In this step, we initialize the training parameters, such as the following:

 � Loss function: Training aims to find weights and biases to minimize a  
loss function. The loss indicates how far the predicted output is from the 
expected result, so the lower the loss, the better the model. Cross-entropy  
is the standard loss function for classification problems because it produces 
faster training with a better model generalization. For a binary classifier, we 
should use binary_crossentropy.

 � Performance metrics: Performance metrics evaluate how well the model 
predicts the output classes. We use accuracy, defined as the ratio between the 
number of correct predictions and the total number of tests:

 � Optimizer: The optimizer is the algorithm used to update the weights of the 
network during training. The optimizer mainly affects the training time. In our 
example, we use the widely adopted Adam optimizer.

Once we have initialized the training parameters, we can train the model.
6. Train the model:

NUM_EPOCHS=20

BATCH_SIZE=64

history = model.fit(x_train, y_train, epochs=NUM_EPOCHS, 
batch_size=BATCH_SIZE, validation_data=(x_validate, y_
validate))

During training, TF reports the loss and accuracy after each epoch on both the train 
and validation datasets, as shown in the following screenshot:

Figure 3.8 – Accuracy and loss are reported on both the train and validation datasets
accuracy and loss are the accuracy and loss on the train data, while  
val_accuracy and val_loss are the accuracy and loss on the  
validation data.
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It is best to rely on the accuracy and loss of the validation data to prevent 
overfitting and to see how the model behaves on unseen data.

7. Plot the accuracy and loss over training epochs:

loss_train = history.history['loss']

loss_val   = history.history['val_loss']

acc_train  = history.history['accuracy']

acc_val    = history.history['val_accuracy']

epochs     = range(1, NUM_EPOCHS + 1)

def plot_train_val_history(x, y_train, y_val, type_txt):

  plt.figure(figsize = (10,7))

  plt.plot(x, y_train, 'g', label='Training'+type_txt)

  plt.plot(x, y_val, 'b', label='Validation'+type_txt)

  plt.title('Training and Validation'+type_txt)

  plt.xlabel('Epochs')

  plt.ylabel(type_txt)

  plt.legend()

  plt.show()

plot_train_val_history(epochs, loss_train, loss_val, 
"Loss")

plot_train_val_history(epochs, acc_train, acc_val, 
"Accuracy")

The preceding code plots the following two charts:

Figure 3.9 – Plot of the accuracy (left chart) and loss (right chart) over training epochs
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From the plots of the accuracy and loss during training, we can see the trend of 
the model's performance. The trend tells us whether we should train less to avoid 
overfitting or more to prevent underfitting. The validation accuracy and loss 
are at their best around ten epochs in our case. Therefore, we should consider 
terminating the training earlier to prevent overfitting. To do so, you can either 
re-train the network for ten epochs or use the EarlyStopping Keras function 
to stop training when a monitored performance metric has stopped improving. 
You can discover more about EarlyStopping at the following link: https://
www.tensorflow.org/api_docs/python/tf/keras/callbacks/
EarlyStopping.

8. Save the entire TF model as a SavedModel:

model.save("snow_forecast")

SavedModel is a directory containing the following:

 � The TF model as a protobuf binary (with the .pb file extension)

 � A TF checkpoint (https://www.tensorflow.org/guide/
checkpoint)

 � Training parameters such as optimizer, loss, and performance metrics

Therefore, the preceding command creates the snow_forecast folder, which you 
can explore using the file explorer pane on the left of Colab.

We have finally in our hands a model to forecast the snow!

Evaluating the model's effectiveness
Accuracy and loss are not enough to judge the model's effectiveness. In general, accuracy 
is a good performance indicator if the dataset is balanced, but it does not tell us the 
strengths and weaknesses of our model. For instance, what classes do we recognize with 
high confidence? What frequent mistakes does the model make?

This recipe will judge the model's effectiveness by visualizing the confusion matrix and 
evaluating the recall, precision, and F1-score performance metrics.

The following Colab file (see the Evaluating the model's effectiveness section in the 
following repository) contains the code referred to in this recipe:

• preparing_model.ipynb: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter03/ColabNotebooks/preparing_model.ipynb

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/guide/checkpoint
https://www.tensorflow.org/guide/checkpoint
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
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Getting ready
To complete this recipe, we need to know what a confusion matrix is and which 
performance metrics we can use to understand whether the model works fine.

The following subsections will examine these performance indicators.

Visualizing the performance with the confusion matrix
A confusion matrix is an NxN matrix reporting the number of correct and incorrect 
predictions on the test dataset.

For our binary classification model, we have a 2x2 matrix like the one in the following 
diagram:

Figure 3.10 – Confusion matrix

The four values reported in the previous confusion matrix are as follows:

• True positive (TP): The number of predicted positive results that are actually 
positive

• True negative (TN): The number of predicted negative results that are actually 
negative
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• False positive (FP): The number of predicted positive results that are actually 
negative

• False negative (FN): The number of predicted negative results that are actually 
positive

Ideally, we would like to have 100% accuracy, therefore, zero in the gray cells (FN and FP) 
of the confusion matrix reported in Figure 3.10. In fact, from the confusion matrix, we can 
calculate the accuracy using the following formula:

However, as previously mentioned, we are more interested in alternative performance 
metrics. These performance indicators are described in the following subsection.

Evaluating recall, precision, and F-score
The first performance metric evaluated is recall, defined as follows:

This metric tells us how many of all positive ("Yes") samples we predicted correctly. Recall 
should be as high as possible.

However, this metric does not consider the misclassification of negative samples. In short, 
the model could be excellent at classifying positive samples but incapable of classifying 
negative ones.

For this reason, there is another metric that takes into consideration FPs. It is precision, 
defined as follows:

This metric tells us how many predicted positive classes ("yes") were actually positive. 
Precision should be as high as possible.
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Another key performance metric combines recall and precision with a single formula.  
It is F-score, defined as follows:

This formula helps us to evaluate the recall and precision metrics at the same time.  
Also, a high F-score implies a good model performance.

How to do it…
The following steps will teach us how to visualize the confusion matrix and calculate the 
recall, precision, and F-score metrics:

1. Visualize the confusion matrix:

y_test_pred = model.predict(x_test)

y_test_pred = (y_test_pred > 0.5).astype("int32")

cm = sklearn.metrics.confusion_matrix(y_test, y_test_pred)

index_names  = ["Actual No Snow", "Actual Snow"]

column_names = ["Predicted No Snow", "Predicted Snow"]

df_cm = pd.DataFrame(cm, index = index_names, columns = 
column_names)

plt.figure(figsize = (10,7))

sns.heatmap(df_cm, annot=True, fmt='d', cmap="Blues")

plt.figure(figsize = (10,7))

The previous code produces the following output:

− =
2 ∙ ∙

+
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Figure 3.11 – Confusion matrix for the snow forecast model
The confusion matrix is obtained with the following two steps:
A. Predict the labels on the test dataset using model.predict() and threshold 

the output result at 0.5. The thresholding is required because model.
predict() returns the output of the sigmoid function, which is a value 
between zero and one.

B. Use the confusion_matrix() function from the scikit-learn library to 
calculate the confusion matrix (cm).

From Figure 3.11, we can see that the samples are mainly distributed in the leading 
diagonal, and there are more FPs than FNs. Therefore, although the network is 
suitable for detecting snow, we should expect some false detections.

2. Calculate the recall, precision, and F-score performance metrics:

TN = cm[0][0]

TP = cm[1][1]

FN = cm[1][0]

FP = cm[0][1]

precision = TP / (TP + FP)

recall = TP / (TP + FN)
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f_score = (2 * recall * precision) / (recall + precision)

print("Recall:    ", round(recall, 3))

print("Precision: ", round(precision, 3))

print("F-score:     ", round(f_score, 3))

The preceding code prints the following information on the output console:

Figure 3.12 – Expected results for precision, recall, and F-score
As we can see from the expected results, Recall equals 0.983, so our model can 
forecast the snow with high confidence. However, the Precision is lower, 0.808. 
This metric shows that we should expect some false alarms from our model. Finally, 
the value of 0.887 obtained for the F-score tells us that Recall and Precision are 
balanced. Therefore, we have a good ML model in our hands capable of forecasting 
the snow with the input features provided.

The model is now trained and validated. Hence, it is time to make it suitable for 
microcontroller deployment.

Quantizing the model with the TFLite 
converter
Exporting the trained network as SavedModel saves the training graphs such as 
the network architecture, weights, training variables, and checkpoints. Therefore, the 
generated TF model is perfect for sharing or resuming a training session but not suitable 
for microcontroller deployment for the following reasons:

• The weights are stored in floating-point format.

• The model keeps information that's not required for the inference.

Since our target device has computational and memory constraints, it is crucial to 
transform the trained model into something compact.
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This recipe will teach how to quantize and convert the trained model into a lightweight, 
memory-efficient, and easy-to-parse exporting format with TensorFlow Lite (TFLite). 
The generated model will then be converted to a C-byte array, suitable for microcontroller 
deployments.

The following Colab file (see the Quantizing the model with TFLite converter section in the 
following recipe) contains the code referred to in this recipe:

• preparing_model.ipynb: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter03/ColabNotebooks/preparing_model.ipynb

Getting ready
The main ingredients used in this recipe are the TFLite converter and quantization.

TFLite (https://www.tensorflow.org/lite) is a deep learning framework 
specifically for inference on edge devices such as smartphones or embedded platforms.

As reported in the following diagram, TFLite provides a set of tools for the following:

• Converting the TF model into a lightweight representation

• Running the model efficiently on the target device

Figure 3.13 – TFLite components

The lightweight model representation used by TFLite is identified with the .tflite 
extension, and it is internally represented as FlatBuffers (https://google.github.
io/flatbuffers/). The FlatBuffers format offers a flexible, easy-to-parse, and 
memory-efficient structure. The TFLite converter is responsible for converting the TF 
model to FlatBuffers and applying optimizations based on 8-bit integer quantization to 
reduce the model size and improve latency.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://www.tensorflow.org/lite
https://google.github.io/flatbuffers/
https://google.github.io/flatbuffers/
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Quantizing the input model
An indispensable technique to make the model suitable for microcontrollers is 
quantization.

Model quantization, or simply quantization, has three significant advantages:

• It reduces the model size by converting all the weights to lower bit precision.

• It reduces the power consumption by reducing the memory bandwidth.

• It improves inference performance by employing integer arithmetic for all the 
operations.

This widely adopted technique applies the quantization after training and converts the 
32-bit floating-point weights to 8-bit integer values. To understand how quantization 
works, consider the following C-like function that approximates a 32-bit floating-point 
value using an 8-bit value:

float dequantize(int8 x, float zero_point, float scale) {

  return ((float)x - zero_point) * scale;

}

In the proceeding code, x is the quantized value represented as an 8-bit signed integer 
value, while scale and zero_point are the quantization parameters. The scale 
parameter is used to map our quantized value to the floating-point domain and vice versa. 
zero_point is the offset to consider for the quantized range. 

To understand why the zero_point could not be zero, consider the following floating-
point input distribution that we want to scale to the 8-bit range:

Figure 3.14 – Example where the distribution of the values is shifted toward the negative range
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The proceeding figure shows that the input floating-point distribution is not zero-centered 
but shifted toward the negative range. Therefore, if we simply scaled the floating-point 
values to 8-bit, we could have the following:

• Multiple negative input values with the same 8-bit counterpart

• Many positive 8-bit values unused

Therefore, it would be inefficient to assign zero to zero_point since we could dedicate a 
larger range to the negative values to reduce their quantization error, defined as follows:

When zero_point is not zero, we commonly call the quantization asymmetric because 
we assign a different range of values for the positive and negative sides, as shown in the 
following diagram:

Figure 3.15 – Asymmetric quantization

When zero_point is zero, we commonly call the quantization symmetric because it is 
symmetric about zero, as we can see in the following diagram:

Figure 3.16 – Symmetric quantization

= −  
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Commonly, we apply symmetric quantization to the model's weights and asymmetric 
quantization to the input and output of the layers.

The scale and zero_point values are the only parameters required for quantization 
and are commonly provided in the following ways:

• Per-tensor: The quantization parameters are the same for all tensor elements.

• Per-channel: The quantization parameters are different for each feature map of  
the tensor.

The following diagram visually describes per-tensor and per-channel quantization:

Figure 3.17 – Per-tensor versus per-channel quantization

Commonly, we adopt the per-tensor approach except for the weights and biases of the 
convolution and depth-wise convolution layers.

How to do it…
The following steps show how to use the TFLite converter to quantize and produce a 
suitable model for microcontrollers:

1. Select a few hundred samples randomly from the test dataset to calibrate the 
quantization:

def representative_data_gen():

  for i_value in tf.data.Dataset.from_tensor_slices(x_
test).batch(1).take(100):
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    i_value_f32 = tf.dtypes.cast(i_value, tf.float32)

    yield [i_value_f32]

This step is commonly called generating a representative dataset, and it is essential  
to reduce the risk of an accuracy drop in the quantization. In fact, the converter  
uses this set of samples to find out the range of the input values and then estimate 
the quantization parameters. Typically, a hundred samples is enough and can be 
taken from the test or training dataset. In our case, we used the test dataset.

2. Import the TF SavedModel directory into TFLite converter:

converter = tf.lite.TFLiteConverter.from_saved_
model("snow_forecast")

3. Initialize the TFLite converter for the 8-bit quantization:

# Representative dataset

converter.representative_dataset = tf.lite.
RepresentativeDataset(representative_data_gen)

# Optimizations

converter.optimizations = [tf.lite.Optimize.DEFAULT]

# Supported ops

converter.target_spec.supported_ops = [tf.lite.OpsSet.
TFLITE_BUILTINS_INT8]

# Inference input/output type

converter.inference_input_type = tf.int8

converter.inference_output_type = tf.int8

In this step, we configure the TFLite converter to apply the 8-bit quantization. The 
input arguments passed to the tool are as follows:

 � Representative dataset: This is the representative dataset generated in the  
first step.

 � Optimizations: This defines the optimization strategy to adopt. At the moment, 
only DEFAULT optimization is supported, which tries to optimize for both size 
and latency, minimizing the accuracy drop.

 � Supported ops: This forces the adoption of only integer 8-bit operators  
during the conversion. If our model has unsupported kernels, the conversion 
will not succeed.
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 � Inference input/output type: This adopts the 8-bit quantization format for the 
network's input and output. Therefore, we will need to feed the ML model with 
the quantized input features to run the inference correctly.

Once we have initialized the TFLite converter, we can execute the conversion:
tflite_model_quant = converter.convert()

4. Save the converted model as .tflite:

open("snow_forecast_model.tflite", "wb").write(tflite_
model_quant)

5. Convert the TFLite model to a C-byte array with xxd:

!apt-get update && apt-get -qq install xxd

!xxd -i snow_forecast_model.tflite > model.h

The previous command outputs a C header file (the -i option) containing the 
TFLite model as an unsigned char array with many hexadecimal numbers. 
However, in the Getting ready section, we mentioned that the model is a file with 
a .tflite extension. Therefore, why do we need this extra conversion? The 
conversion to a C-byte array is crucial for deploying the model on microcontrollers 
because the .tflite format requires an additional software library into our 
application to load the file from memory. We need to remember that most 
microcontrollers do not have OS and native filesystem support. Therefore, the 
C-byte array format allows us to integrate the model directly into the application. 
The other important reason for this conversion is that the .tflite file does not 
allow keeping the weights in program memory. Since every byte matters and the 
SRAM has a limited capacity, keeping the model in program memory is generally 
more memory efficient when the weights are constant.

Now, you can download the generated model.h file from Colab's left pane. The TFLite 
model is stored in the snow_forecast_model_tflite array.

Using the built-in temperature and humidity 
sensor on Arduino Nano
As we know, the Arduino Nano and Raspberry Pi Pico have unique hardware features  
that make them ideal for tackling different development scenarios. For example, the 
Arduino Nano have a built-in temperature and humidity sensor so that we do not need 
external components for our project with this board.



Using the built-in temperature and humidity sensor on Arduino Nano     101

In this recipe, we will show how to read the temperature and humidity sensor data on an 
Arduino Nano.

The following Arduino sketch contains the code referred to in this recipe:

• 06_sensor_arduino_nano.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter03/ArduinoSketches/06_sensor_arduino_nano.ino

Getting ready
There are no particular new things to know to accomplish this task. Therefore, this 
Getting ready section will give just an overview of the main characteristics of the built-in 
temperature and humidity sensor on the Arduino Nano.

The Arduino Nano board integrates the HTS221 (https://www.st.com/resource/
en/datasheet/HTS221.pdf) sensor from ST (https://www.st.com/content/
st_com/en.html) for relative humidity and temperature measurements.

The sensor is ultra-compact (2x2mm) and provides the measurements through two  
digital serial interfaces. The following table reports the main characteristics of this  
sensing element:

Figure 3.18 – Key characteristics of the HTS221 temperature and humidity sensor

As we can see from the table, the sensor is extremely low-power since it has a current 
power consumption in the range of µA.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/06_sensor_arduino_nano.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/06_sensor_arduino_nano.ino
https://www.st.com/resource/en/datasheet/HTS221.pdf
https://www.st.com/resource/en/datasheet/HTS221.pdf
https://www.st.com/content/st_com/en.html
https://www.st.com/content/st_com/en.html
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How to do it…
Create a new sketch on the Arduino IDE and follow the following steps to initialize and 
test the temperature and humidity sensor on an Arduino Nano:

1. Include the Arduino_HTS221.h C header file in the sketch:

#include <Arduino_HTS221.h>

2. Create function-like macros for reading the temperature and humidity:

#define READ_TEMPERATURE() HTS.readTemperature()

#define READ_HUMIDITY() HTS.readHumidity()

The reason for defining the preceding two C macros is because the Raspberry 
Pi Pico will use different functions to read the temperature and humidity from 
the sensor. Therefore, it is more practical to have a common interface so that our 
Arduino Nano and Raspberry Pi Pico applications can share most of their code.

3. Initialize both the serial peripheral and the HTS221 sensor in the setup() 
function:

void setup() {

  Serial.begin(9600);

  while (!Serial);

  if (!HTS.begin()) {

    Serial.println("Failed initialization of HTS221!");

    while (1);

  }

}

The serial peripheral will be used to return the classification result.

Important Note
As reported in the FAQ of the Arduino Nano 33 BLE Sense Board, due to self-
heating, when the board is powered by USB, the HTS221 becomes unreliable and 
shows an offset in each reading that changes with the external temperature.

We recommend disconnecting the USB cable and powering the board with 
batteries through the VIN pin to obtain reliable measurements. Refer to 
Chapter 2, Prototyping with Microcontrollers, to discover how to power an 
Arduino Nano with batteries.
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Using the DHT22 sensor with the Raspberry  
Pi Pico
In contrast to the Arduino Nano, the Raspberry Pi Pico requires an external sensor 
module and an additional software library to measure the temperature and humidity.

In this recipe, we will show how to use the DHT22 sensor with a Raspberry Pico to get 
temperature and humidity measurements.

The following Arduino sketch contains the code referred to in this recipe:

• 07_sensor_rasp_pico.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter03/ArduinoSketches/07_sensor_rasp_pico.ino

Getting ready
The temperature and humidity sensor module considered for the Raspberry Pi Pic is the 
low-cost AM2302 that you can get either from Adafruit (https://www.adafruit.
com/product/393) or Amazon.

As shown in the following diagram, the AM2302 module is a through-hole component 
with three pins that integrates the DHT22 temperature and humidity sensor:

Figure 3.19 – The AM2302 module with the DHT22 sensor

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/07_sensor_rasp_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/07_sensor_rasp_pico.ino
https://www.adafruit.com/product/393
https://www.adafruit.com/product/393
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The following table summarizes the key characteristics of the DHT22 sensor:

Figure 3.20 – Key characteristics of the DHT22 temperature and humidity sensor

Note
DHT11 is another popular temperature and humidity sensor from the 
DHT family. However, we cannot use it in our recipe because it has a good 
temperature accuracy only between 0 °C and 50 °C.

In contrast to the HTS221 sensor on the Arduino Nano, the DHT22 has a digital protocol 
to read the temperature and humidity values. The protocol must be implemented through 
the GPIO peripheral and requires precise timing to read the data. Luckily, Adafruit 
developed a software library (https://github.com/adafruit/DHT-sensor-
library) for the DHT sensors, so we do not have to worry about it. The library will 
deal with the low-level software details and provide an API to read the temperature and 
humidity.

How to do it…
Create a new sketch on the Arduino IDE and follow these steps to use the DHT22 sensor 
with a Raspberry Pi Pico:

1. Connect the DHT22 sensor to the Raspberry Pi Pico. Use the G10 (row 14) GPIO 
on the Raspberry Pi Pico for the DHT22 data terminal:

https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/DHT-sensor-library
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Figure 3.21 – Complete circuit with the Raspberry Pi Pico and the AM2302 sensor module

2. Download the latest release of the DHT sensor software library from https://
www.arduino.cc/reference/en/libraries/dht-sensor-library/. 
In the Arduino IDE, import the ZIP file by clicking on the Libraries tab on the left 
pane and Import, as shown in the following screenshot:

Figure 3.22 – Import the DHT sensor library in Arduino Web Editor

https://www.arduino.cc/reference/en/libraries/dht-sensor-library/
https://www.arduino.cc/reference/en/libraries/dht-sensor-library/
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A pop-up window will tell us that the library has been successfully imported.
3. Include the DHT.h C header file in the sketch:

#include <DHT.h>

4. Define a global DHT object to interface with the DHT22 sensor:

const int gpio_pin_dht_pin = 10;

DHT dht(gpio_pin_dht_pin, DHT22);

The DHT object is initialized with the GPIO pin used by the DHT22 data terminal 
(G10) and the type of DHT sensor (DHT22).

5. Create function-like macros for reading the temperature and humidity:

#define READ_TEMPERATURE() dht.readTemperature()

#define READ_HUMIDITY() dht.readHumidity()

The function's name must be the same as the ones of the previous recipe. This step 
ensures a common function interface to measure the temperature and humidity on 
an Arduino Nano and a Raspberry Pi Pico.

6. Initialize the serial peripheral and the DHT22 sensor in the setup() function:

void setup() {

  Serial.begin(9600);

  while(!Serial);

  dht.begin();

  delay(2000);

}

The DHT22 can only return new data after two seconds. For this reason, we use 
delay(2000) to wait for the peripheral to be ready.

Now, the Raspberry Pi Pico can read temperature and humidity sensor data.

Preparing the input features for the model 
inference
As we know, the model's input features are the scaled and quantized temperature and 
humidity of the last three hours. Using this data, the ML model can forecast whether it 
will snow.
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In this recipe, we will see how to prepare the input data to feed into our ML model. 
In particular, this recipe will teach us how to acquire, scale, and quantize the sensor 
measurements and keep them in temporal order using a circular buffer.

The following Arduino sketch contains the code referred to in this recipe:

• 08_input_features.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter03/ArduinoSketches/08_input_features.ino

Getting ready
Our application will acquire the temperature and humidity every hour to get the necessary 
input features for the model. However, how can we keep the last three measurements in 
temporal order to feed the network the correct input?

In this recipe, we will use a circular buffer, a fixed-sized data structure that implements a 
First-In-First-Out (FIFO) buffer.

This data structure is well-suited to buffering data streams and can be implemented with 
an array and a pointer that tells where to store the element in memory. The following 
diagram shows how a circular buffer with three elements works:

Figure 3.23 – Circular buffer with three elements

As you can see from the preceding diagram, this data structure simulates a ring since the 
pointer (Ptr) is incremented after each data insertion and wraps around when it reaches 
the end.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/08_input_features.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/08_input_features.ino
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How to do it…
The instructions provided in this section apply to both the Arduino Nano and the 
Raspberry Pi Pico. Follow these steps to see how to create a circular buffer and prepare  
the input for the model inference:

1. Define two global int8_t arrays of size three and an integer variable to implement 
the circular buffer data structure:

#define NUM_HOURS 3

int8_t t_vals [NUM_HOURS] = {0};

int8_t h_vals [NUM_HOURS] = {0};

int cur_idx = 0;

These two arrays will be used to keep the scaled and quantized temperature and 
humidity measurements in temporal order.

2. Define two variables for the scale (float) and zero point (int32_t) 
quantization parameters of the input features:

float   tflu_i_scale      = 0.0f;

int32_t tflu_i_zero_point = 0;

The following recipe will extract these quantization parameters from the TF model. 
Please note that scale (tflu_i_scale) is a floating-point number, while zero 
point (tflu_i_zero_point) is a 32-bit integer.

3. Take the average of three temperature and humidity samples, captured every three 
seconds in the loop() function:

constexpr int num_reads = 3;

void loop() {  

  float t = 0.0f;

  float h = 0.0f;

  for(int i = 0; i < num_reads; ++i) {

    t += READ_TEMPERATURE();

    h += READ_HUMIDITY();

    delay(3000);

  }

  t /= (float)num_reads;

  h /= (float)num_reads;
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Capturing more than one sample is, in general, a good way to have a robust 
measurement.

4. Scale the temperature and humidity data with Z-score in the loop() function: 

constexpr float t_mean  = 2.05179f;

constexpr float h_mean  = 82.30551f;

constexpr float t_std   = 7.33084f;

constexpr float h_std   = 14.55707f;

t = (t – t_mean) / t_std;

h = (h – h_mean) / h_std;

Z-score requires the mean and standard deviation, which we calculated in the 
second recipe of this chapter.

5. Quantize the input features in the loop() function:

t_vals[cur_idx] = (t / tflu_i_scale) + tflu_i_zero_point;

h_vals[cur_idx] = (h / tflu_i_scale) + tflu_i_zero_point;

The samples are quantized using the tflu_i_scale and tflu_i_zero_
point input quantization parameters. Remember that the model's input uses the 
per-tensor quantization schema, so all input features need to be quantized with the 
same scale and zero-point.

6. Store the temperature and humidity sensor in the circular array:

t_vals[cur_idx] = t;

h_vals[cur_idx] = h;

cur_idx = (cur_idx + 1) % NUM_HOURS;

delay(2000);

The pointer of the circular buffer (cur_index) is updated after each data insertion 
with the following formula:

= ( + 1) % ℎ  

In the preceding formula, ℎ   is the size of the circular buffer, while 
  and   are the pointer's values before and after the data insertion.

Important Note
At the end of the code, we have a delay of two seconds, but it should be one 
hour in the actual application. The pause of two seconds is used to avoid 
waiting too long in our experiments.
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On-device inference with TFLu
Here we are, with our first ML application on microcontrollers.

In this recipe, we will finally discover how to use TensorFlow Lite for Microcontrollers 
(TFLu) to run the TFLite model on an Arduino Nano and a Raspberry Pi Pico.

The following Arduino sketch contains the code referred to in this recipe:

• 09_classification.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter03/ArduinoSketches/09_classification.ino

Getting ready
To get ready with this last recipe, we need to know how inference with TFLu works.

TFLu was introduced in Chapter 1, Getting Started with TinyML, and is the software 
component that runs TFLite models on microcontrollers.

Inference with TFLu typically consists of the following:

1. Loading and parsing the model: TFLu parses the weights and network architecture 
stored in the C-byte array.

2. Transforming the input data: The input data acquired from the sensor is converted 
to the expected format required by the model. 

3. Executing the model: TFLu executes the model using optimized DNN functions.

When dealing with microcontrollers, it is necessary to optimize every line of our code to 
keep the memory footprint at the minimum and maximize performance. 

For this reason, TFLu also integrates software libraries to get the best performance from 
various target processors. For example, TFLu supports CMSIS-NN (https://www.
keil.com/pack/doc/CMSIS/NN/html/index.html), a free and open source 
software library developed by Arm for optimized DNN operators on Arm Cortex-M 
architectures. These optimizations are relevant to the critical DNN primitives such as 
convolution, depth-wise convolution, and the fully connected layer, and are compatible 
with the Arm processors in the Arduino Nano and Raspberry Pi Pico.

At this point, you might have one question in mind: How can we use TFLu with 
CMSIS-NN?

We do not need to install additional libraries because TFLu for Arduino comes with 
CMSIS-NN. Therefore, Arduino will automatically include CMSIS-NN to run the 
inference faster when using TFLu.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/09_classification.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/09_classification.ino
https://www.keil.com/pack/doc/CMSIS/NN/html/index.html
https://www.keil.com/pack/doc/CMSIS/NN/html/index.html
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How to do it…
The instructions in this section are applicable to both the Arduino Nano and the 
Raspberry Pi Pico. The following steps will show how to use TFLu to run the snow 
forecast TFLite model on our boards:

1. Import the model.h file into the Arduino project. As shown in the following 
screenshot, click on the tab button with the upside-down triangle and click on 
Import File into Sketch.

Figure 3.24 – Importing the model.h file into the Arduino project
A folder window will appear from which you can drag and drop the TFLu  
model's file.

Once the file has been imported, include the C header in the sketch:
#include "model.h"

2. Include the header files required by TFLu:

#include <TensorFlowLite.h>

#include <tensorflow/lite/micro/all_ops_resolver.h>

#include <tensorflow/lite/micro/micro_error_reporter.h>

#include <tensorflow/lite/micro/micro_interpreter.h>

#include <tensorflow/lite/schema/schema_generated.h>

#include <tensorflow/lite/version.h>

The main header files are as follows:

 � all_ops_resolver.h: To load the DNN operators required for running the 
ML model

 � micro_error_reporter.h: To output the debug information returned by 
the TFLu runtime

 � micro_interpreter.h: To load and execute the ML model
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 � schema_generated.h: For the schema of the TFLite FlatBuffer format

 � version.h: For the versioning of the TFLite schema

For more information about the header files, we recommend reading the Get 
started with microcontroller guide in the TF documentation (https://www.
tensorflow.org/lite/microcontrollers/get_started_low_
level).

3. Declare the variables required by TFLu:

const tflite::Model* tflu_model            = nullptr;

tflite::MicroInterpreter* tflu_interpreter = nullptr;

TfLiteTensor* tflu_i_tensor                = nullptr;

TfLiteTensor* tflu_o_tensor                = nullptr;

tflite::MicroErrorReporter tflu_error;

constexpr int tensor_arena_size = 4 * 1024;

byte tensor_arena[tensor_arena_size] __attribute__
((aligned(16)));

The global variables declared in this step are as follows:

 � tflu_model: The model parsed by the TFLu parser.

 � tflu_interpreter: The pointer to TFLu interpreter. 

 � tflu_i_tensor: The pointer to the model's input tensor.

 � tflu_o_tensor: The pointer to the model's output tensor.

 � tensor_arena: The memory required by the TFLu interpreter. TFLu does 
not use dynamic allocation. Therefore, we should provide a fixed amount 
of memory for the input, output, and intermediate tensors. The arena's size 
depends on the model and is only determined by experiments. In our case, 
4,096 is more than enough.

The preceding variables are generally required in all TFLu-based applications.
4. Load the TFLite model from the C-byte snow_forecast_model_tflite array 

in the setup() function:

tflu_model = tflite::GetModel(snow_forecast_model_
tflite);

5. Define a tflite::AllOpsResolver object in the setup() function:

tflite::AllOpsResolver tflu_ops_resolver;

https://www.tensorflow.org/lite/microcontrollers/get_started_low_level
https://www.tensorflow.org/lite/microcontrollers/get_started_low_level
https://www.tensorflow.org/lite/microcontrollers/get_started_low_level
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The TFLu interpreter will use this interface to find the function pointers for each 
DNN operator.

6. Create the TFLu interpreter in the setup() function:

tflu_interpreter = new tflite::MicroInterpreter(tflu_
model, tflu_ops_resolver, tensor_arena, tensor_arena_
size, &tflu_error);

7. Allocate the memory required for the model and get the memory pointer of the 
input and output tensors in the setup() function:

tflu_interpreter->AllocateTensors();

tflu_i_tensor = tflu_interpreter->input(0);

tflu_o_tensor = tflu_interpreter->output(0);

8. Get the quantization parameters for the input and output tensors in the setup() 
function:

const auto* i_quantization = reinterpret_
cast<TfLiteAffineQuantization*>(tflu_i_tensor-
>quantization.params);

onst auto* o_quantization = reinterpret_
cast<TfLiteAffineQuantization*>(tflu_o_tensor-
>quantization.params);

tflu_i_scale      = i_quantization->scale->data[0];

tflu_i_zero_point = i_quantization->zero_point->data[0];

tflu_o_scale      = o_quantization->scale->data[0];

tflu_o_zero_point = o_quantization->zero_point->data[0];

The quantization parameters are returned in the TfLiteAffineQuantization 
object, containing two arrays for the scale and zero point parameters. Since 
both input and output tensors adopt a per-tensor quantization, each array stores a 
single value.

9. Initialize the input tensor with the quantized input features in the loop() function:

const int idx0 = cur_idx;

const int idx1 = (cur_idx - 1 + NUM_HOURS) % NUM_HOURS;

const int idx2 = (cur_idx - 2 + NUM_HOURS) % NUM_HOURS;

tflu_i_tensor->data.int8[0] = t_vals[idx2];

tflu_i_tensor->data.int8[1] = t_vals[idx1];

tflu_i_tensor->data.int8[2] = t_vals[idx0];
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tflu_i_tensor->data.int8[3] = h_vals[idx2];

tflu_i_tensor->data.int8[4] = h_vals[idx1];

tflu_i_tensor->data.int8[5] = h_vals[idx0];

Since we need the last three samples, we use the following formula to read the 
elements from the circular buffer:

= −  + ℎ  % ℎ  

In the preceding formula, N is the sampling instant and   is the 
corresponding circular buffer's pointer. For example, if t0 is the current instant,  
N = 0 means the sample at time t = t0, N = 1 the sample at time t = t0 – 1, and  
N = 2 the sample at time t = t0 – 2.

10. Run the inference in the loop() function:

tflu_interpreter->Invoke();

11. Dequantize the output tensor and forecast the weather condition in the loop() 
function:

int8_t out_int8 = tflu_o_tensor->data.int8[0];

float out_f = (out_int8 - tflu_o_zero_point) * tflu_o_
scale;

if (out_f > 0.5) {

  Serial.println("Yes, it snows"); 

}

else {

  Serial.println("No, it does not snow"); 

}

The dequantization of the output is done with the tflu_o_scale and tflu_o_
zero_point quantization parameters retrieved in the setup() function. Once 
we have the floating-point representation, the output is considered No when it is 
below 0.5; otherwise, it's Yes.

Now, compile and upload the program on the microcontroller board. The serial terminal 
in the Arduino IDE will report Yes, it snows or No, it does not snow, depending on 
whether snow is forecast.

To check if the application can forecast snow, you can simply force the temperature to -10 
and the humidity to 100. The model should return Yes, it snows on the serial terminal.



4
Voice Controlling 

LEDs with Edge 
Impulse

Keyword spotting (KWS) is a technology applied in a wide range of daily-life applications 
to enable an entirely hands-free experience with the device. The detection of the famous 
wake-up words OK Google, Alexa, Hey Siri, or Cortana represents a particular usage  
of this technology, where the smart assistant continuously listens for the magic phrase 
before starting to interact with the device.

Since KWS aims to identify utterances from real-time speech, it needs to be on-device, 
always-on, and running on a low-power system to be effective.

This chapter demonstrates the usage of KWS through Edge Impulse by building  
an application to voice control the light-emitting diode (LED)-emitting color  
(red, green, and blue (or RGB)) and the number of times to make it blink  
(one, two, and three times). 

This TinyML application could find space in smart educational toys to learn both color 
and number vocabulary with peace of mind regarding privacy and security since it does 
not require internet connectivity.
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This chapter will start focusing on the dataset preparation, showing how to acquire audio 
data with a mobile phone. Next, we will design a model based on Mel-frequency cepstral 
coefficients (MFCC), one of the most popular features for speech recognition. In these 
recipes, we will show how to extract MFCCs from audio samples, train the machine 
learning (ML) model, and optimize the performance with the EON Tuner. At the end of 
the chapter, we will concentrate on finalizing the KWS application on the Arduino Nano 
and the Raspberry Pi Pico.

This chapter is intended to show how to develop an end-to-end (E2E) KWS application 
with Edge Impulse and get familiar with audio data acquisition and analog-to-digital 
converter (ADC) peripherals.

In this chapter, we're going to implement the following recipes:

• Acquiring audio data with a smartphone

• Extracting MFCC features from audio samples

• Designing and training a neural network (NN) model

• Tuning model performance with EON Tuner

• Live classifications with a smartphone

• Live classifications with the Arduino Nano

• Continuous inferencing on the Arduino Nano

• Building the circuit with the Raspberry Pi Pico to voice control LEDs

• Audio sampling with ADC and timer interrupts on the Raspberry Pi Pico

Technical requirements
To complete all the practical recipes of this chapter, we will need the following:

• An Arduino Nano 33 BLE Sense board

• A Raspberry Pi Pico board

• Smartphone (Android phone or Apple iPhone)

• Micro Universal Serial Bus (USB) cable

• 1 x half-size solderless breadboard

• 1 x electret microphone amplifier - MAX9814 (Raspberry Pi Pico only)
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• 11 x jumper wires (Raspberry Pi Pico only)

• 2 x 220 Ohm resistor (Raspberry Pi Pico only)

• 1 x 100 Ohm resistor (Raspberry Pi Pico only)

• 1 x red LED (Raspberry Pi Pico only)

• 1 x green LED (Raspberry Pi Pico only)

• 1 x blue LED (Raspberry Pi Pico only)

• 1 x push-button (Raspberry Pi Pico only)

• Laptop/PC with either Ubuntu 18.04+ or Windows 10 on x86-64

The source code and additional material are available in the Chapter04 folder of 
the GitHub repository (https://github.com/PacktPublishing/TinyML-
Cookbook/tree/main/Chapter04).

Acquiring audio data with a smartphone
As for all ML problems, data acquisition is the first step to take, and Edge Impulse offers 
several ways to do this directly from the web browser.

In this recipe, we will learn how to acquire audio samples using a mobile phone.

Getting ready
Acquiring audio samples with a smartphone is the most straightforward data acquisition 
approach offered by Edge Impulse because it only requires a phone (Android phone or 
Apple iPhone) with internet connectivity.

However, how many samples do we need to train the model?

Collecting audio samples for KWS
The number of samples depends entirely on the nature of the problem—therefore, no 
appraoch fits all. For a situation such as this, 50 samples for each class could be sufficient 
to get a basic model. However, 100 or more are generally recommended to get better 
results. We want to give you complete freedom on this choice. However, remember to get 
an equal number of samples for each class to obtain a balanced dataset. 

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter04
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter04
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Whichever dataset size you choose, try including different variations in the instances of 
speech, such as accents, inflations, pitch, pronunciations, and tone. These variations will 
make the model capable of identifying words from different speakers. Typically, recording 
audio from persons of different ages and genders should cover all these cases.

Although there are six output classes to identify (red, green, blue, one, two, and 
three), we should consider an additional class for cases when anyone is speaking or  
there are unknown words in the speech.

How to do it…
Open the Edge Impulse Dashboard and give a name to your project (for example, 
voice_controlling_leds).

Note
In this recipe, N will be used to refer to the number of samples for each output 
class.

Follow the next steps to acquire audio data with the mobile phone's microphon:

1. Click on Let's collect some data from the Acquire data section.

Then, click on Show QR code on the Use your mobile phone option from the menu:

Figure 4.1 – Clicking on the Show QR code to pair the mobile phone with Edge Impulse
Scan the Quick Response (QR) code with your smartphone to pair the device with 
Edge Impulse. A pop-up window on your phone will confirm that the device is 
connected, as shown in the following screenshot:
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Figure 4.2 – Edge Impulse message on your phone
On your mobile phone, click on Collecting audio? and give permission to use the 
microphone. 

Since it is not required to have a laptop and smartphone in the same network, we 
could collect audio samples anywhere. As we can guess, this approach is well suited 
to recording sounds from different environments since it only requires a phone with 
internet connectivity.

2. Record N (for example, 50) utterances for each class (red, green, blue, one, two, and 
three). Before clicking on Start recording, set Category to Training and enter one 
of the following labels in the Label field, depending on the spoken word:

Figure 4.3 – Labels for the output categories
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Since the label encoding assigns an integer value based on alphabetical ordering 
to each output category, our proposed names (00_red, 01_green, 02_blue, 
03_one, 04_two, and 05_three) will be helpful to know whether we have a color 
or a number from the label index easily. For example, if the label index is less than 3, 
we have a color.

We recommend repeating the same utterance several times in a single recording to 
avoid uploading too many files into Edge Impulse. For example, you could record 
audio of 20 seconds (s) where you repeat the same word 10 times with a 1-s pause 
in between. 

The recordings will be available in the Data acquisition section. By clicking on the 
file, you can visualize the corresponding audio waveform:

Figure 4.4 – Audio waveform
The raw audio waveform is the signal recorded by the microphone and graphically 
describes the sound-pressure variation over time. The vertical axis reports the 
amplitude of this vibration, while the horizontal axis reports the time. The higher 
waveform amplitude implies louder audio as perceived by the human ear.

3. Split the recordings containing repetitions of the utterance in individual samples by 
clicking on ⋮  near the filename and then clicking on Split sample, as shown in the 
following screenshot:
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Figure 4.5 – Split sample option
Edge Impulse will automatically detect spoken words, as you can observe from the 
following screenshot:

Figure 4.6 – Audio waveform with repetitions of the same utterance
Set the segment length to 1000 milliseconds (ms) (1 s), and ensure all the  
samples are centered within the cutting window. Then, click on Split to get the 
individual samples.
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4. Download the keyword dataset from Edge Impulse (https://cdn.
edgeimpulse.com/datasets/keywords2.zip) and unzip the file. Import 
N random samples from the unknown dataset into the Edge Impulse project. Go 
to Data acquisition and click on the Upload existing data button from the Collect 
data menu:

Figure 4.7 – Button to upload existing training data
On the UPLOAD DATA page, do the following:

 � Set Upload category to Training.

 � Write unknown in the Enter label field.

Click on Begin upload to import the files into the dataset.
5. Split the samples between training and test datasets by clicking on the Perform 

train / test split button in the Danger zone area of the Dashboard:

Figure 4.8 – Danger zone in Edge Impulse
Edge Impulse will ask you twice if you are sure about this action because the data 
shuffling is irreversible.

You should now have 80% of the samples assigned to the training/validation set and 20% 
to the test one.

Extracting MFCC features from audio samples
When building an ML application with Edge Impulse, the impulse is responsible for all of 
the data processing, such as feature extraction and model inference.

In this recipe, we will see how to design an impulse to extract MFCC features from the 
audio samples.

https://cdn.edgeimpulse.com/datasets/keywords2.zip
https://cdn.edgeimpulse.com/datasets/keywords2.zip
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Getting ready
Let's start this recipe by discussing what an impulse is and examining the MFCC features 
used for our KWS application.

In Edge Impulse, an impulse is responsible for data processing and consists of two 
computational blocks, mainly the following:

• Processing block: This is the preliminary step in any ML application, and it aims to 
prepare the data for the ML algorithm. 

• Learning block: This is the block that implements the ML solution, which aims to 
learn patterns from the data provided by the processing block.

The processing block determines the ML effectiveness since the raw input data is often 
not suitable for feeding the model directly. For example, the input signal could be noisy 
or have irrelevant and redundant information for training the model, just to name a few 
scenarios.

Therefore, Edge Impulse offers several pre-built processing functions, including the 
possibility to have custom ones.

In our case, we will use the MFCC feature extraction processing block, and the following 
subsections will help us learn more about this.

Analyzing audio in the frequency domain
In contrast to vision applications where convolutional NNs (CNNs) can make feature 
extraction part of the learning process, typical speech recognition models do not perform 
well with raw audio data. Therefore, feature extraction is required and needs to be part of 
the processing block.

We know from physics that sound is the vibration of air molecules that propagates as  
a wave. For example, if we played a pure single tone, the microphone would record  
a sine signal:

Figure 4.9 – Sine waveform



124     Voice Controlling LEDs with Edge Impulse

Although the sounds in nature are far from pure, every sound can be expressed as the sum 
of sine waves at different frequencies and amplitudes.

Since a frequency and amplitude characterize sine waves, we commonly represent the 
components in the frequency domain through the power spectrum:

Figure 4.10 – Representation of a signal in the frequency domain

The power spectrum reports the frequency on the horizontal axis and the power (S) 
associated with each component on the vertical axis.

The Discrete Fourier Transform (DFT) is the required mathematical tool to decompose  
a digital audio waveform in all its constituent sine waves, commonly called components.

Now that we are familiar with the frequency representation of an audio signal, let's see 
what we can generate as an input feature for a CNN. 

Generating a mel spectrogram 
A spectrogram can be considered an audio signal's image representation because it 
visually shows the power spectrum over time.

A spectrogram is obtained by splitting the audio waveform into smaller segments and 
applying the DFT on each one, as shown in the following screenshot:
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Figure 4.11 – Audio waveform and spectrogram of the red utterance

In the spectrogram, each vertical slice represents the power spectrum associated with each 
segment—in particular:

• The width reports the time.

• The height reports the frequency.

• The color reports the power spectrum amplitude, so a brighter color implies  
a higher amplitude.

However, a spectrogram obtained in this way would be ineffective for voice speech 
recognition because the relevant features are not emphasized. In fact, as we can observe 
from the preceding screenshot, the spectrogram is dark in almost all regions.

Therefore, the spectrogram is adjusted considering that humans perceive frequencies and 
loudness on a logarithmic scale rather than linearly. These adjustments are as follows:

• Scaling the frequency (hertz, or Hz) to Mel with the Mel scale filter bank: The 
Mel scale remaps the frequencies to make them distinguishable and perceived 
equidistantly. For example, if we played pure tones from 100 Hz to 200 Hz  
with a 1 Hz step, we could distinctly perceive all 100 frequencies. However,  
if we conducted the same experiment at higher frequencies (for example, between  
7500 Hz and 7600 Hz), we could barely hear all tones. Therefore, not all frequencies 
are equally important for our ears.
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The Mel scale is commonly computed using triangular filters overlapped  
(filter bank) in the frequency domain.

• Scaling the amplitudes using the decibel (dB) scale: The human brain does not 
perceive amplitude linearly but logarithmically, as with frequencies. Therefore, we 
scale the amplitudes logarithmically to make them visible in the spectrogram.

The spectrogram obtained by applying the preceding transformations is a mel spectrogram 
or Mel-frequency energy (MFE). The MFE of the red word using 40 triangular filters is 
reported in the following screenshot, where we can now clearly notice the intensity of the 
frequency components:

Figure 4.12 – Spectrogram and Mel spectrogram of the red utterance

Although the mel spectrogram works well with audio recognition models, there is also 
something more efficient for human speech recognition regarding the number of input 
features—the MFCC.

Extracting the MFCC
MFCC aims to extract fewer and highly unrelated coefficients from the mel spectrogram.

The Mel filter bank uses overlapped filters, which makes the components highly correlated. 
If we deal with human speech, we can decorrelate them by applying the Discrete Cosine 
Transform (DCT). 

The DCT provides a compressed version of the filter bank. From the DCT output, we can 
keep the first 2-13 coefficients (cepstral coefficients) and discard the rest because they 
do not bring additional information for human speech recognition. Hence, the resulting 
spectrogram has fewer frequencies than the mel spectrogram (13 versus 40).
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How to do it…
We start designing our first impulse by clicking on the Create impulse option from the 
left-hand side menu, as shown in the following screenshot:

Figure 4.13 – Create impulse option

In the Create impulse section, ensure the time-series data has the Window size field set to 
1000 ms and the Window increase field to 500 ms.

Window increase is a parameter specifically for continuous KWS applications, where 
there is a continuous audio stream and we do not know when the utterance starts. In this 
scenario, we should split the audio stream into windows (or segments) of equal length and 
execute the ML inference on each one. Window size is the temporal length of the window, 
while Window increase is the temporal distance between two consecutive segments, as 
shown in the following diagram:

Figure 4.14 – Window size versus Window increase

The Window size value depends on the training sample length (1 s) and may affect 
the accuracy results. On the contrary, the Window increase value does not impact the 
training results but affects the chances of getting a correct start of the utterance. In fact, 
a smaller Window increase value implies a higher probability. However, the suitable 
Window increase value will depend on the model latency.
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The following steps show how to design a processing block for extracting MFCC features 
from recorded audio samples:

1. Click on the Add a processing block button and add Audio (MFCC).
2. Click on the Add a learning block button and add Classification (Keras).

The Output features block should report the seven output classes to recognize  
(00_red, 01_green, 02_blue, 03_one, 04_two, 05_three, and unknown),  
as shown in the following screenshot:

Figure 4.15 – Output features
Save the impulse by clicking on the Save Impulse button.  

3. Click on MFCC from the Impulse design category. In the new window, we can play 
on the parameters affecting the extraction of MFCC features, such as the number of 
cepstral coefficients, the number of triangular filters applied for the Mel scale, and 
so on. All the MFCC parameters are kept at their default values.

At the bottom of the page, there are also two parameters for the pre-emphasis stage. 
The pre-emphasis stage is performed before generating a spectrogram to reduce 
the effect of noise by increasing energy at the highest frequencies. If the Coefficient 
value is 0, there is no pre-emphasis on the input signal. The pre-emphasis 
parameters are kept at their default values.

4. Extract the MFCC features from each training sample by clicking on the Generate 
features button: 
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Figure 4.16 – Generate features button
Edge Impulse will return Job completed in the console output at the end of  
this process.

MFCC features are now extracted from all the recorded audio samples.

There's more…
Once MFCCs have been generated, we can use the Feature explorer tool to examine  
the generated training dataset in a three-dimensional (3D) scatter plot, as shown in  
the following screenshot:

Figure 4.17 – Feature explorer showing the seven output classes

From the Feature explorer chart, we should infer whether the input features are suitable 
for our problem. If so, the output classes (except the unknown output category) should be 
well separated. 
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Under the Feature explorer area, we find the On-device performance section related  
to MFCC:

Figure 4.18 – MFCC performance on the Arduino Nano 33 BLE Sense board

PROCESSING TIME (latency) and PEAK RAM USAGE (data memory) are estimated 
considering the target device selected in Dashboard | Project info:

Figure 4.19 – Target device reported in Project info

From Project info, you can change the target device for performance estimation.

Unfortunately, Edge Impulse does not support the Raspberry Pi Pico, so the estimated 
performance will only be based on the Arduino Nano.

Designing and training a NN model
In this recipe, we will be leveraging the following NN architecture to recognize our words:

Figure 4.20 – NN architecture
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The model has two two-dimensional (2D) convolution layers, one dropout layer, and one 
fully connected layer, followed by a softmax activation.

The network's input is the MFCC feature extracted from the 1-s audio sample.

Getting ready
To get ready for this recipe, we just need to know how to design and train a NN in Edge 
Impulse. 

Depending on the learning block chosen, Edge Impulse exploits different underlying 
ML frameworks for training. For a classification learning block, the framework uses 
TensorFlow with Keras. The model design can be performed in two ways:

• Visual mode (simple mode): This is the quickest way and through the user 
interface (UI). Edge Impulse provides some basic NN building blocks and 
architecture presets, which are beneficial if you have just started experimenting  
with deep learning (DL). 

• Keras code mode (expert mode): If we want more control over the network 
architecture, we can edit the Keras code directly from the web browser.

Once we have designed the model, we can launch the training from the same window. 

How to do it…
Click on Neural Network (Keras) under Impulse design and follow the next steps to 
design and train the NN presented in Figure 4.20:

1. Select the 2D Convolutional architecture preset and remove the Dropout layer 
between the two convolution layers:

Figure 4.21 – Deleting the dropout layer between the two 2D convolution layers
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2. Switch to Keras (expert) mode by clicking on ⋮ . In the coding area, delete the 
MaxPooling2D layers:

Figure 4.22 – Deleting the two pooling layers from the Keras code
Set the strides of the first convolution layer to (2,2):

model.add(Conv2D(8, strides=(2,2), kernel_size=3, 
activation='relu', kernel_constraint=tf.keras.
constraints.MaxNorm(1), padding='same'))

The pooling layer is a subsampling technique that reduces information propagated 
through the network and lowers the overfitting risk. However, this operator may 
increase latency and random-access memory (RAM) usage. In memory-constraint 
devices such as microcontrollers, memory is a precious resource, and we need to 
use it as efficiently as possible. Therefore, the idea is to adopt non-unit strides in 
convolution layers to reduce spatial dimensionality. This approach is typically more 
performant because we skip the pooling layer computation entirely, and we can have 
faster convolution layers, given fewer output elements to process.

3. Launch the training by clicking on the Start training button:

Figure 4.23 – Start training button
The output console will report the accuracy and loss on the training and validation 
datasets during training after each epoch.

At the end of the training, we can evaluate the model's performance (accuracy and loss), 
the confusion matrix, and the estimated on-device performance on the same page.
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Important Note
If you achieve 100% accuracy, this is a sign that the model is likely overfitting 
the data. To avoid this issue, you can either add more data to your training set 
or reduce the learning rate.

If you are not happy with the model's accuracy, we recommend collecting more data and 
training the model again.

Tuning model performance with EON Tuner
Developing the most efficient ML pipeline for a given application is always challenging. 
One way to do this is through iterative experiments. For example, we can evaluate how 
some target metrics (latency, memory, and accuracy) change depending on the input 
feature generation and the model architecture. However, this process is time-consuming 
because there are several combinations, and each one needs to be tested and evaluated. 
Furthermore, this approach requires familiarity with digital signal processing and NN 
architectures to know what to tune.

In this recipe, we will use the EON Tuner to find the best ML pipeline for the  
Arduino Nano.

Getting ready
EON Tuner (https://docs.edgeimpulse.com/docs/eon-tuner) is a tool 
for automating the discovery of the best ML-based solution for a given target platform. 
However, it is not just an automated ML (AutoML) tool because the processing block  
is also part of the optimization problem. Therefore, the EON Tuner is an E2E optimizer 
for discovering the best combination of processing block and ML model for a given set  
of constraints, such as latency, RAM usage, and accuracy.

How to do it…
Click on the EON Tuner from the left-hand side menu and follow the next steps to learn 
how to find the most efficient ML-based pipeline for our applicatio:

1. Set up the EON Tuner by clicking on the settings wheel icon in the Target area:

Figure 4.24 – EON Tuner settings

https://docs.edgeimpulse.com/docs/eon-tuner
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Edge Impulse will open a new window for setting up the EON Tuner. In this 
window, set the Dataset category, Target device, and Time per inference values,  
as follows:

 � Dataset category: Keyword spotting

 � Target device: Arduino Nano 33 BLE Sense (Cortex-M4F 64MHz)

 � Time per inference (ms): 100

Since Edge Impulse does not support the Raspberry Pi Pico yet, we can only tune 
the performance for the Arduino Nano 33 BLE Sense board.

We set the Time for inference value to 100 ms to discover faster solutions than 
previously obtained in the Designing and training a NN model recipe.

2. Save the EON Tuner settings by clicking on the Save button.
3. Launch the EON Tuner by clicking on Start EON Tuner. The process can take from 

several minutes up to 6 hours, depending on the dataset size. The tool will show 
the progress in the progress bar and report the discovered architectures in the same 
window, as shown in the following screenshot:

Figure 4.25 – EON Tuner reports a confusion matrix for each proposed ML solution
Once the EON Tuner has completed the discovery phase, you will have a collection 
of ML-based solutions (processing + ML model) to choose from.
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4. Select an architecture with higher accuracy and lower window increase by clicking 
on the Select button. Our selected architecture has a 250-ms window increase and 
uses MFE as an input feature and 1D convolution layers.

As you can observe, the input feature is not MFCC. The EON Tuner proposes 
this alternative processing block because it considers the latency of the entire ML 
pipeline rather than just the model inference. Therefore, it is true that MFE could 
slow down the model inference because it returns a spectrogram with more features 
than MFCC. However, MFE is considerably faster than MFCC because it does not 
require extracting the DCT components.

Once you have selected an architecture, Edge Impulse will ask you to update the 
primary model. Click on Yes to override the architecture trained in the previous 
Designing and training a NN model recipe. A pop-up window will appear, 
confirming that the primary model has been updated.

In the end, click on Retrain model from the left-hand side panel and click on Train 
model to train the network again.

Live classifications with a smartphone
When we talk of model testing, we usually refer to the evaluation of the trained model on 
the testing dataset. However, model testing in Edge Impulse is more than that.

In this recipe, we will learn how to test model performance on the test set and show a way 
to perform live classifications with a smartphone.

Getting ready
Before implementing this recipe, the only thing we need to know is how we can evaluate 
model performance in Edge Impulse.

In Edge Impulse, we can evaluate the trained model in two ways:

• Model testing: We assess the accuracy using the test dataset. The test dataset 
provides an unbiased evaluation of model effectiveness because the samples  
are not used directly or indirectly during training.

• Live classification: This is a unique feature of Edge Impulse whereby we can record 
new samples either from a smartphone or a supported device (for example, the 
Arduino Nano).

The live classification approach benefits from testing the trained model in the real world 
before necessarily deploying the application on the target platform.
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How to do it…
Follow the next steps to evaluate model performance with the test dataset and the live 
classification tool:

1. Click on Model testing from the left panel and click on Classify all.

Edge Impulse will take care of extracting the MFE from the test set, running the 
trained model, and reporting the performance in the confusion matrix.

2. Click on Live classification from the left panel and ensure the smartphone is 
reported in the Device list:

Figure 4.26 – Device list showing that the mobile phone is paired with Edge Impulse
Select Microphone from the Sensor drop-down list in the Live classification 
section and set the Sample length (ms) value to 10000. Keep Frequency at the 
default value (16000 Hz).

3. Click on Start sampling and then click on Give access to the Microphone on  
your phone. Record any of our six utterances (red, green, blue, one, two, and three). 
The audio sample will be uploaded on Edge Impulse once you have completed  
the recording. 

At this point, Edge Impulse will split the recording into 1-second-length samples and test 
the trained model on each one. The classification results will be reported on the same page 
and in the following forms:

• Generic summary: This reports the number of detections for each output category:
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Figure 4.27 – Generic summary reporting the number of detections for each keyword

• Detailed analysis: This reports the probability of the classes at each timestamp,  
as shown in the following screenshot:

Figure 4.28 – Detailed analysis reporting the probability of the classes at each timestamp

If you click on a table entry, Edge Impulse will show the corresponding audio waveform in 
the window, as shown in Figure 4.28.
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Live classifications with the Arduino Nano
If you found live classification with the smartphone helpful, live classification with the 
Arduino Nano will be even more helpful.

This recipe will show how to pair the Arduino Nano with Edge Impulse to perform live 
classifications directly from our target platform. 

Getting ready
Testing model performance with the sensor used in the final application is a good practice 
to have more confidence in the accuracy results. Thanks to Edge Impulse, it is possible to 
perform live classification on the Arduino Nano with a few simple steps that you can also 
find at the following link: https://docs.edgeimpulse.com/docs/arduino-
nano-33-ble-sense.

How to do it…
Live classifications with the built-in microphone on the Arduino Nano require installing 
additional software on your machine. The different tools work on Linux, macOS, and 
Windows, and are listed here:

• Edge Impulse command-line interface (CLI): https://docs.edgeimpulse.
com/docs/cli-installation

• Arduino CLI: https://arduino.github.io/arduino-cli/0.19/

Once you have installed the dependencies, follow the next steps to pair the Arduino Nano 
platform with Edge Impulse:

1. Run arduino-cli core install arduino:mbed_nano from Command 
Prompt or the terminal.

2. Connect the Arduino Nano board to your computer and press the RESET button  
on the platform twice to enter the device in bootloader mode.

The built-in LED should start blinking to confirm that the platform is in  
bootloader mode.

3. Download the Edge Impulse firmware for the Arduino Nano from https://cdn.
edgeimpulse.com/firmware/arduino-nano-33-ble-sense.zip and 
decompress the file. The firmware will be required to send audio samples from the 
Arduino Nano to Edge Impulse.

https://docs.edgeimpulse.com/docs/arduino-nano-33-ble-sense
https://docs.edgeimpulse.com/docs/arduino-nano-33-ble-sense
https://docs.edgeimpulse.com/docs/cli-installation
https://docs.edgeimpulse.com/docs/cli-installation
https://arduino.github.io/arduino-cli/0.19/
https://cdn.edgeimpulse.com/firmware/arduino-nano-33-ble-sense.zip
https://cdn.edgeimpulse.com/firmware/arduino-nano-33-ble-sense.zip
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4. In the unzipped folder, execute the flash script to upload the firmware on the 
Arduino Nano. You should use the script accordingly with your operating system 
(OS)—for example, flash_linux.sh for Linux.

Once the firmware has been uploaded on the Arduino Nano, you can press the 
RESET button to launch the program.

5. Execute edge-impulse-daemon from Command Prompt or the terminal. The 
wizard will ask you to log in and select the Edge Impulse project you're working on.

The Arduino Nano should now be paired with Edge Impulse. You can check if the 
Arduino Nano is paired by clicking on Devices from the left-hand side panel, as shown in 
the following screenshot:

Figure 4.29 – List of devices paired with Edge Impulse

As you can see from the preceding screenshot, the Arduino Nano (personal) is listed in 
the Your devices section.

Now, go to Live classification and select Arduino Nano 33 BLE Sense board from the 
Device drop-down list. You can now record audio samples from the Arduino Nano and 
check if the model works.

Important Note
If you discover that the model does not work as expected, we recommend 
adding audio samples recorded with the microphone of the Arduino Nano in 
the training dataset. To do so, click on Data acquisition and record new data 
using the Arduino Nano device from the right-hand side panel.



140     Voice Controlling LEDs with Edge Impulse

Continuous inferencing on the Arduino Nano
As you can guess, the application deployment differs on the Arduino Nano and the 
Raspberry Pi Pico because the devices have different hardware capabilities.

In this recipe, we will show how to implement a continuous keyword application on the 
Arduino Nano.

The following Arduino sketch contains the code referred to in this recipe:

• 07_kws_arduino_nano_ble33_sense.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter04/ArduinoSketches/07_kws_arduino_nano_ble33_
sense.ino

Getting ready
The application on the Arduino Nano will be based on the nano_ble33_sense_
microphone_continuous.cpp example provided by Edge Impulse, which 
implements a real-time KWS application. Before changing the code, we want to examine 
how this example works to get ready for the recipe.

Learning how a real-time KWS application works
A real-time KWS application—for example, the one used in the smart assistant—should 
capture and process all pieces of the audio stream to never miss any events. Therefore, the 
application needs to record the audio and run the inference simultaneously so that we do 
not skip any information. 

On a microcontroller, parallel tasks can be performed in two ways:

• With a real-time OS (RTOS). In this case, we can use two threads for capturing and 
processing the audio data.

• With a dedicated peripheral such as direct memory access (DMA) attached to 
the ADC. DMA allows data transfer without interfering with the main program 
running on the processor.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/07_kws_arduino_nano_ble33_sense.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/07_kws_arduino_nano_ble33_sense.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/07_kws_arduino_nano_ble33_sense.ino
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In this recipe, we won't deal with this aspect directly. In fact, the nano_ble33_sense_
microphone_continuous.cpp example already provides an application where 
the audio recording and inference run simultaneously through a double-buffering 
mechanism. Double buffering uses two buffers of fixed size, where the following applies:

• One buffer is dedicated to the audio sampling task.

• One buffer is dedicated to the processing task (feature extraction and ML inference).

Each buffer keeps the number of audio samples required for a window increase recording. 
Therefore, the buffer size can be calculated through the following formula:

The preceding formula can be defined as the product of the following:

• SF (Hz): Sampling frequency in Hz (for example, 16 kilohertz (kHz) = 16000 Hz)

• WI (s): Window increase in s (for example, 250 ms = 0.250 s)

For example, if we sample the audio signal at 16 kHz and the window increase is 250 ms, 
each buffer will have a capacity of 4,000 samples.

These two buffers are continuously switched between recording and processing tasks, and 
the following diagram visually shows how:

Figure 4.30 – Recording and processing tasks running simultaneously

From the preceding diagram, we can observe the following:

1. The recording task starts filling Buffer 0 at t=T0.
2. At t=T1, Buffer 0 is full. Therefore, the processing task can start the inference using 

the data in Buffer 0. Meanwhile, the recording task continues capturing audio data 
in the background using Buffer 1. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑆𝑆𝑆𝑆(𝐻𝐻𝐻𝐻) ∙ 𝑊𝑊𝑊𝑊(𝑠𝑠) 
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3. At t=T2, Buffer 1 is full. Therefore, the processing task must have finished the 
previous computation before starting a new one.

Keeping the window increase as short as possible has the following benefits:

• Increases the probability of getting the correct beginning of an utterance

• Reduces the computation time of feature extraction because this is only computed 
on the window increase

However, the window increase should be long enough to guarantee that the processing task 
can complete within this time frame.

At this point, you might have one question in mind: If we have a window increase of  
250 ms, how can the double buffers feed the NN since the model expects a 1-s audio sample?

The double buffers are not the NN input but the input for an additional buffer containing 
the samples of the 1-s audio. This buffer stores the data on a first-in, first-out (FIFO) 
basis and provides the actual input to the ML model, as shown in the following diagram:

Figure 4.31 – The FIFO buffer is used to feed the NN model

Therefore, every time we start a new processing task, the sampled data is copied into the 
FIFO queue before running the inference.

How to do it…
With the following steps, we will make some changes to the nano_ble33_sense_
microphone_continuous.cpp file to control the built-in RGB LEDs on the Arduino 
Nano with our voice:

1. In Edge Impulse, click on Deployment from the left-hand side menu and select 
Arduino Library from the Create library options, as shown in the following 
screenshot:
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Figure 4.32 – Create library options in Edge Impulse
Next, click on the Build button at the bottom of the page and save the ZIP file on 
your machine. The ZIP file is an Arduino library containing the KWS application, 
the routines for feature extraction (MFCC and MFE), and a few ready-to-use 
examples for the Arduino Nano 33 BLE Sense board.

2. Open the Arduino integrated development environment (IDE) and import the 
library created by Edge Impulse. To do so, click on the Libraries tab from the left 
pane and then click on the Import button, as shown in the following screenshot:

Figure 4.33 – Import library in Arduino Web Editor
Once imported, open the nano_ble33_sense_microphone_continuous 
example from Examples | FROM LIBRARIES | <name_of_your_project>_
INFERENCING.

In our case, <name_of_your_project> is VOICE_CONTROLLING_LEDS, which 
matches the name given to our Edge Impulse project.

In the file, the EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW C macro 
defines the window increase in terms of the number of frames processed per model 
window. We can keep it at the default value.
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3. Declare and initialize a global array of mbed::DigitalOut objects to drive the 
built-in RGB LEDs:

mbed::DigitalOut rgb[] = {p24, p16, p6};

#define ON 0

#define OFF 1

The initialization of mbed::DigitalOut requires the PinName value of the 
RGB LEDs. The pin names can be found in the Arduino Nano 33 BLE Sense board 
schematic (https://content.arduino.cc/assets/NANO33BLE_V2.0_
sch.pdf):

Figure 4.34 – The built-in RGB LEDs are powered by a current-sinking circuit  
(https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf)

The RGB LEDs—identified with the labels LR, LG, and LB—are controlled by a 
current-sinking circuit and are connected to P0.24, P0.16, and P0.06:

Figure 4.35 – The RGB LEDs are connected to P0.24, P0.16, and P0.06  
(https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf)

Therefore, the general-purpose input/output (GPIO) pin must supply 0 volts 
(V) (LOW) to turn on the LEDs. To avoid using numerical values, we can use the 
#define ON 0 and #define OFF 1 C defines to turn the LEDs on and off.

https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf
https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf
https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf
https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf
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4. Define an integer global variable (current_color) to keep track of the last 
detected color. Initialize it to 0 (red):

size_t current_color = 0;

5. Initialize the built-in RGB LEDs in the setup() function by turning on just 
current_color:

rgb[0] = OFF; rgb[1] = OFF; rgb[2] = OFF; rgb[current_
color] = ON;

6. In the loop() function, set to false the moving average (MA) flag in the  
run_classifier_continuous() function:

run_classifier_continuous(&signal, &result, debug_nn, 
false);

The run_classifier_continuous() function is responsible for the model 
inference. The MA is disabled by passing false after the debug_nn parameter. 
However, why do we disable this functionality?

MA is an effective method to filter out false detections when the window increase is 
small. For example, consider the word bluebird. This word contains blue, but it is not 
the utterance we want to recognize. However, when running continuous inference 
with a slight window increase, there is the benefit of processing small pieces of the 
word at a time. Therefore, the blue word may be detected with high confidence in 
one piece but not in the others. So, the goal of the MA is to average the results of 
classifications over time to avoid false detections.

As we can guess, the output class must have multiple high-rated classifications when 
using the MA. Therefore, what happens if the window increase is significant?

When the window increase is significant (for example, greater than 100 ms), we 
process fewer segments per second, and then the moving average could filter out all 
the classifications. Since our window increase will be between 250 ms and 500 ms 
(depending on the ML architecture chosen), we recommend you disable it to avoid 
filtering out the classifications.

7. Remove the code after run_classifier_continuous() till the end of the 
loop() function.
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8. In the loop() function and after run_classifier_continuous(), write the 
code to return a class with higher probability:

size_t ix_max = 0;

float  pb_max = 0.0f;

for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) 
{

  if(result.classification[ix].value > pb_max) {

    ix_max = ix;

    pb_max = result.classification[ix].value;

  }

}

In the preceding code snippet, we iterate through all the output classes  
(EI_CLASSIFIER_LABEL_COUNT) and keep the index (ix) with the  
maximum classification value (result.classification[ix].value).  
EI_CLASSIFIER_LABEL_COUNT is a C define provided by Edge Impulse  
and is equal to the number of output categories.

9. If the probability of the output category (pb_max) is higher than a fixed threshold 
(for example, 0.5) and the label is not unknown, check whether it is a color. If the 
label is a color and different from the last one detected, turn off current_color 
and turn on new_color:

size_t new_color = ix_max; 

if (new_color != current_color) {

  rgb[current_color] = OFF;

  rgb[new_color] = ON;

  current_color = new_color;

}

If the label is a number, blink the current_color LED for the recognized 
number of times:

const size_t num_blinks = ix_max0 - 2;

for(size_t i = 0; i < num_blinks; ++i) {

  rgb[current_color] = OFF;

  delay(1000);

  rgb[current_color] = ON;

  delay(1000);

}
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Compile and upload the sketch on the Arduino Nano. You should now be able to change 
the color of the LED or make it blink with your voice.

Building the circuit with the Raspberry Pi Pico 
to voice control LEDs
The Raspberry Pi Pico has neither a microphone nor RGB LEDs onboard for building a 
KWS application. Therefore, voice controlling the RGB LEDs on this platform requires 
building an electronic circuit.

This recipe aims to prepare a circuit with the Raspberry Pi Pico, RGB LEDs,  
a push-button, and an electret microphone with a MAX9814 amplifier.

Getting ready
The application we have considered for the Raspberry Pi Pico is not based on continuous 
inferencing. Here, we would like to use a button to start the audio recording of 1 s and 
then run the model inference to recognize the utterance. The spoken word, in turn, will be 
used to control the status of the RGB LEDs.

In the following subsection, we will learn more about using the electret microphone with 
the MAX9814 amplifier.

Introducing the electret microphone amplifier with the MAX9814 
amplifier
The microphone put into action in this recipe is the low-cost electret microphone 
amplifier – MAX9814. You can buy the microphone from the following distributors:

• Pimoroni: https://shop.pimoroni.com/products/adafruit-
electret-microphone-amplifier-max9814-w-auto-gain-control

• Adafruit: https://www.adafruit.com/product/1713

The signal coming from the microphone is often tiny and requires amplification to be 
adequately captured and analyzed. 

For this reason, our microphone is coupled with the MAX9814 chip (https://
datasheets.maximintegrated.com/en/ds/MAX9814.pdf), an amplifier 
with built-in automatic gain control (AGC). AGC allows the capturing of speech in 
environments where the background audio level changes unpredictably. Therefore, 
the MAX9814 automatically adapts the amplification gain to make the voice always 
distinguishable.

https://shop.pimoroni.com/products/adafruit-electret-microphone-amplifier-max9814-w-auto-gain-control
https://shop.pimoroni.com/products/adafruit-electret-microphone-amplifier-max9814-w-auto-gain-control
https://www.adafruit.com/product/1713
https://datasheets.maximintegrated.com/en/ds/MAX9814.pdf
https://datasheets.maximintegrated.com/en/ds/MAX9814.pdf
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The amplifier requires a supply voltage between 2.7V and 5.5V and produces an  
output with a maximum peak-to-peak voltage (Vpp) of 2Vpp on a 1.25V direct  
current (DC) bias.

Note
Vpp is the full height of the waveform.

Therefore, the device can be connected to ADC, expecting input signals between 0V  
and 3.3V.

As shown in the following diagram, the microphone module has five holes at the bottom 
for inserting the header strip:

Figure 4.36 – Electret microphone with MAX9814

The header strip is required for mounting the device on the breadboard, and it typically 
needs to be soldered.

Tip
If you are not familiar with soldering, we recommend reading the following 
tutorial: 

https://learn.adafruit.com/adafruit-agc-electret-
microphone-amplifier-max9814/assembly

In the following subsection, you will discover how to connect this device with the 
Raspberry Pi Pico.

Connecting the microphone to the Raspberry Pi Pico ADC
The voltage variations produced by the microphone require conversion to a digital format.

The RP2040 microcontroller on the Raspberry Pi Pico has four ADCs to carry out this 
conversion, but only three of them can be used for external inputs because one is directly 
connected to the internal temperature sensor.

https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9814/assembly
https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9814/assembly
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The pin reserved for the ADCs are shown here:

Figure 4.37 – ADC pins

The expected voltage range for the ADC on the Raspberry Pi Pico is between 0V and 3.3V, 
perfect for the signal coming from our electret microphone.

How to do it…
Let's start by placing the Raspberry Pi Pico on the breadboard. We should mount the 
platform vertically, as we did in Chapter 2, Prototyping with Microcontrollers.

Once you have placed the device on the breadboard, ensure the USB cable is not 
connected to power and follow the next steps to build the electronic circuit:

1. Place the RGB LEDs on the breadboard:

Figure 4.38 – RGB LEDs on the breadboard
Put the resistor in series to the LEDs by connecting one of the two terminals to the 
LED cathode and the other one to GND. The following table reports which resistor 
to use with each LED:

Figure 4.39 – Resistors used with the RGB LEDs
The resistances have been chosen to guarantee at least a ~3 milliampere (mA) 
forward current through each LED.
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The following diagram shows how you can connect the resistors in series to  
the LEDs:

Figure 4.40 – Resistors in series to LEDs
As you can observe, you can plug the microcontroller's GND into the - rail to insert 
the resistor's terminal into the negative bus rail.

2. Connect the RGB LEDs' anode to the GPIO pins:

Figure 4.41 – Resistors connected to GND
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As shown in the previous diagram, the GPIOs used to drive the LEDs are GP9 (red), 
GP8 (green), and GP7 (blue).

Since the resistor is connected between the LED cathode and GND, the LEDs are 
powered by a current sourcing circuit. Therefore, we should supply 3.3V (HIGH) to 
turn them on.

3. Place the push-button on the breadboard: 

Figure 4.42 – Push-button connected to GP10 and GND
The GPIO used for the push-button is GP10.

Since our circuits will require several jumper wires, we place the device at the 
bottom of the breadboard to have enough space to press it.
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4. Place the electret microphone on the breadboard:

Figure 4.43 – Electret microphone mounted on the breadboard
The ADC pin is GP26. Out of the five pins on the microphone module, we only 
need to connect three of them, which are outlined as follows:

 � Vdd (3.3V): This is the supply voltage of the amplifier. Vdd must be stable and 
equal to the ADC supply voltage. These conditions are required to reduce the 
noise on the analog signal coming from the microphone.

 � Vdd should be connected to ADC_VREF, the ADC reference voltage produced 
on the Raspberry Pi Pico.

 � GND: This is the ground of the circuit amplifier and should be the same as the 
ADC peripheral. Since analog signals are more susceptible to noise than digital 
ones, the Raspberry Pi Pico offers a dedicated ground for ADCs: the analog 
ground (AGND). GND should be connected to AGND to decouple the analog 
circuit from the digital one.

 � Out: This is the amplified analog signal coming from the microphone module 
and should be connected to GP26 to sample it with the ADC0 peripheral.
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The following table reports the connections to make between the Raspberry Pi Pico 
and the electret microphone with the MAX9814 amplifier:

Figure 4.44 – Electret microphone connections
The remaining two terminals of the microphone are used to set the gain and 
the attach&release ratio. These settings are not required for this recipe, but 
you can discover more in the MAX9814 datasheet (https://datasheets.
maximintegrated.com/en/ds/MAX9814.pdf).

At this point, you can plug the Raspberry Pi Pico into your computer through the Micro 
USB cable because the circuit is ready to implement our KWS application.

Audio sampling with ADC and timer interrupts 
on the Raspberry Pi Pico
All the components are now mounted on the breadboard. Therefore, there is nothing left 
for us to write our KWS application.

The application consists of recording 1-s audio and running the ML inference when 
pressing the push-button. The classification result will be shown through the RGB LEDs, 
similar to what we have done in the Continuous inferencing on the Arduino Nano recipe.

The following Arduino sketch and Python script contains the code referred to in  
this recipe:

• 09_kws_raspberrypi_pico.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino

• 09_debugging.py: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter04/PythonScripts/09_debugging.py

https://datasheets.maximintegrated.com/en/ds/MAX9814.pdf
https://datasheets.maximintegrated.com/en/ds/MAX9814.pdf
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/PythonScripts/09_debugging.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/PythonScripts/09_debugging.py
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Getting ready
The application on the Raspberry Pi Pico will be based on the Edge Impulse nano_
ble33_sense_microphone.cpp example, where the user speaks at well-defined 
times and the application executes the ML model to guess the spoken word. 

In contrast to what we implemented in the Continuous inferencing on the Arduino Nano 
recipe, the audio recording and processing task can be performed sequentially because the 
push-button will tell us the beginning of the utterance. 

The following subsection will introduce the approach considered in this recipe to sample 
the audio signal with ADC and timer interrupts. 

Audio sampling with ADC and timer interrupts on the Raspberry  
Pi Pico
The RP2040 microcontroller on the Raspberry Pi Pico has four ADCs with 12-bit 
resolution and a maximum sampling frequency of 500 kHz (or 500 kilosamples  
per second (kS/s)).

The ADC will be configured in one-shot mode, which means that the ADC will provide  
the sample as soon as we make the request.

The timer peripheral will be initialized to trigger interrupts at the same frequency as 
the sampling rate. Therefore, the interrupt service routine (ISR) will be responsible for 
sampling the signal coming from the microphone and storing the data in an audio buffer.

Since the ADC maximum frequency is 500 kHz, the minimum time between two 
consecutive conversions is 2 microseconds (us). This constraint is largely met because  
the audio signal is sampled at 16 kHz, which means every 62.5 us.

How to do it…
Open the nano_ble33_sense_microphone example from Examples | FROM 
LIBRARIES | <name_of_your_project>_INFERENCING, and make the following 
changes to implement the KWS application on the Raspberry Pi Pico:

1. Delete all the references to the PDM library, such as the header file (#include 
<PDM.h>) and calls to PDM class methods since these are only required for the 
built-in microphone of the Arduino Nano.

Remove the code within the microphone_inference_record() function.
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2. Declare and initialize a global array of mbed::DigitalOut objects to drive  
the RGB LEDs:

mbed::DigitalOut rgb[] = {p9, p8, p7};

Declare and initialize a global mbed::DigitalOut object to drive the  
built-in LED:

mbed::DigitalOut led_builtin(p25);

#define ON 1

#define OFF 0

Since a current sourcing circuit powers all LEDs, we need to supply 3.3V (HIGH)  
to turn them on.

3. Define an integer global variable (current_color) to keep track of the last 
detected color. Initialize it to 0 (red):

size_t current_color = 0;

Initialize the RGB LEDs in the setup() function by turning on current_color 
only:

rgb[0] = OFF; rgb[1] = OFF; rgb[2] = OFF; rgb[current_
color] = ON; led_builtin = OFF;

4. Declare and initialize the global mbed::DigitalIn object to read the  
push-button state:

mbed::DigitalIn button(p10);

#define PRESSED 0

Set the button mode to PullUp in the setup() function:
button.mode(PullUp);

Since the button is directly connected to GND and the GPIO pin, we must enable 
the internal pull-up resistor by enabling the PullUp button mode. Therefore, the 
numerical value returned by mbed::DigitalIn is 0 when the button is pressed.

5. Add the "hardware/adc.h" header file to use the ADC peripheral:

#include "hardware/adc.h"

Initialize the ADC (GP26) peripheral in the setup() function using the Raspberry 
Pi Pico application programming interface (API):

adc_init(); adc_gpio_init(26); adc_select_input(0);
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Raspberry Pi offers a dedicated API for the RP2040 microcontroller in the 
Raspberry Pi Pico SDK (https://raspberrypi.github.io/pico-sdk-
doxygen/index.html).

Since the Raspberry Pi Pico SDK is integrated into the Arduino IDE, we don't 
need to import any library. We just need to include the header file ("hardware/
adc.h") in the sketch to use the ADC's API.

The ADC is initialized by calling the following functions in setup():
A. adc_init(), to initialize the ADC peripheral.
B. adc_gpio_init(26), to initialize the GPIO used by the ADC. This function 

needs the GPIO pin number attached to the ADC peripheral. Therefore, we pass 
26 because ADC0 is attached to GP26.

C. adc_select_input(0), to initialize the ADC input. The ADC input is  
the reference number of the ADC attached to the selected GPIO. Therefore,  
we pass 0 because we use ADC0.

By calling the preceding functions, we initialize the ADC in one-shot mode.
6. Declare a global mbed::Ticker object to use the timer peripheral:

mbed::Ticker timer;

The timer object will be used to fire the timer interrupts at the frequency of the 
audio sampling rate (16 kHz).

7. Write the timer ISR to sample the audio coming from the microphone:

#define BIAS_MIC ((int16_t)(1.25f * 4095) / 3.3f)

volatile int  ix_buffer       = 0;

volatile bool is_buffer_ready = false;

void timer_ISR() {

  if(ix_buffer < EI_CLASSIFIER_RAW_SAMPLE_COUNT) {

    int16_t v = (int16_t)((adc_read() - BIAS_MIC));

    inference.buffer[ix_buffer] = v;

    ++ix_buffer;

  }

  else {

    is_buffer_ready = true;

  }

}

https://raspberrypi.github.io/pico-sdk-doxygen/index.html
https://raspberrypi.github.io/pico-sdk-doxygen/index.html
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The ISR samples the microphone's signal with the adc_read() function, which 
returns a value from 0 to 4096 because of the ADC resolution. Since the signal 
generated by the MAX9814 amplifier has a bias of 1.25V, we should subtract the 
corresponding digital sample from the measurement. The relationship between 
the voltage sample and the converted digital sample is provided with the following 
formula:

𝐷𝐷𝐷𝐷 = (2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1) ∙ 𝑉𝑉𝐷𝐷
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  

Here, the following applies:
 � DS is the digital sample.

 � resolution is the ADC resolution.

 � VS is the voltage sample.

 � VREF is the ADC supply voltage reference (for example, ADC_VREF).

Therefore, a 12-bit ADC with a VREF of 3.3V converts the 1.25V bias to 1552.

Once we have subtracted the bias from the measurement, we can store it in the 
audio buffer (inference.buffer[ix_buffer] = v) and then increment the 
buffer index (++ix_buffer).

The audio buffer needs to be dynamically allocated in setup() with 
microphone_inference_start(), and it can keep the number of samples 
required for a 1-s recording. The EI_CLASSIFIER_RAW_SAMPLE_COUNT C 
define is provided by Edge Impulse to know the number of samples in 1-s audio. 
Since we sample the audio stream with a sampling rate of 16 kHz, the audio buffer 
will contain 16,000 int16_t samples.

The ISR sets is_buffer_ready to true when the audio buffer is full (ix_
buffer is greater than or equal to EI_CLASSIFIER_RAW_SAMPLE_COUNT). 

ix_buffer and is_buffer_ready are global because they are used by the 
main program to know when the recording is ready. Since ISR changes these 
variables, we must declare them volatile to prevent compiler optimizations.

8. Write the code in microphone_inference_record() to record 1 s of audio:

bool microphone_inference_record(void) {

  ix_buffer = 0;

  is_buffer_ready = false;

  led_builtin = ON;
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  unsigned int sampling_period_us = 1000000 / 16000;

  timer.attach_us(&timer_ISR, sampling_period_us);

  while(!is_buffer_ready);

  timer.detach();

  led_builtin = OFF;

  return true;

}

In microphone_inference_record(), we set ix_buffer to 0 and  
is_buffer_ready to false every time we start a new recording.

The user will know when the recording starts through the built-in LED light  
(led_builtin = ON).

At this point, we initialize the mbed::Ticker object to fire the interrupts with a 
frequency of 16 kHz. To do so, we call the attach_us() method, which requires 
the following:

 � The ISR to call when the interrupt is triggered (&timer_ISR).

 � The interval time for us to fire the interrupt. Since we sample the audio signal 
at 16 kHz, we pass 62us (unsigned int sampling_period_us = 
1000000 / 16000).

The while(!is_buffer_ready) statement is used to check whether the audio 
recording is finished.

When the recording ends, we can stop generating the timer interrupts  
(timer.detach()) and turn off the built-in LED (led_builtin = OFF).

9. Check whether we are pressing the button in the loop() function:

if(button == PRESSED) {

If so, wait for almost a second (for example, 700 ms) to avoid recording the 
mechanical sound of the pressed button:

  delay(700);

We recommend not releasing the push-button until the end of the recording to also 
prevent a mechanical sound when releasing it.
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Next, record 1 s of audio with the microphone_inference_record() 
function and execute the model inference by calling run_classifier():

  microphone_inference_record();

  signal_t signal;

  signal.total_length = EI_CLASSIFIER_RAW_SAMPLE_COUNT;

  signal.get_data = &microphone_audio_signal_get_data;

  ei_impulse_result_t result = { 0 };

  run_classifier(&signal, &result, debug_nn);

After the run_classifier() function, you can use the same code written in the 
Continuous inferencing on the Arduino Nano recipe to control the RGB LEDs.

However, before ending the loop() function, wait for the button to be released:
  while(button == PRESSED);

}

Now, compile and upload the sketch on the Raspberry Pi Pico. When the device is ready, 
press the push-button, wait for the built-in LED light, and try to speak loud and close to 
the microphone to control the RGB LEDs with your voice.

You should now be able to control the RGB LEDs with your voice!

There's more…
What can we do if the application does not work? We may have different reasons, but 
one could be related to the recorded audio. For example, how can we know if the audio is 
recorded correctly?

To debug the application, we have implemented the 09_debugging.py Python script 
(https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/
Chapter04/PythonScripts/09_debugging.py) to generate an audio file (.wav) 
from the audio captured by the Raspberry Pi Pico.

The Python script works locally on your machine and only needs the PySerial, uuid, 
Struct, and Wave modules in your environment.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/PythonScripts/09_debugging.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/PythonScripts/09_debugging.py
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The following steps show how to use the Python script for debugging the application on 
the Raspberry Pi Pico:

1. Import the 09_kws_raspberrypi_pico.ino sketch (https://github.
com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/
ArduinoSketches/09_kws_raspberrypi_pico.ino) in the Arduino IDE 
and set the debug_audio_raw variable to true. This flag will allow the Raspberry 
Pi Pico to transmit audio samples over the serial whenever we have a new recording.

2. Compile and upload the 09_kws_raspberrypi_pico.ino sketch on the 
Raspberry Pi Pico.

3. Run the 09_debugging.py Python script, providing the following input 
arguments:

 � --label: The label assigned to the recorded utterance. The label will be the 
prefix for the filename of the generated .wav audio files. 

 � --port: Device name of the serial peripheral used by the Raspberry Pi Pico. 
The port's name depends on the OS—for example, /dev/ttyACM0 on  
GNU/Linux or COM1 on Windows. The easiest way to find out the serial  
port's name is from the device drop-down menu in the Arduino IDE:

Figure 4.45 – Device drop-down menu in Arduino Web Editor

Once the Python script has been executed, it will parse the audio samples transmitted over 
the serial to produce a .wav file whenever you press the push-button.

You can listen to the audio file with any software capable of opening .wav files.

If the audio level of the .wav file is too low, try speaking loud and close to the 
microphone when recording.

However, suppose the audio level is acceptable, and the application still does not work. 
In that case, the ML model is probably not generic enough to deal with the signal of the 
electret microphone. To fix this problem, you can expand the training dataset in Edge 
Impulse with the audio samples obtained from this microphone. For this scope, upload 
the generated .wav audio files in the Data acquisition section of Edge Impulse and train 
the model again. Once you have prepared the model, you just need to build a new Arduino 
library and import it into the Arduino IDE.

If you are wondering how this script works, don't worry. In the following chapter, you will 
learn more about it.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino
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Computer vision is what made convolutional neural networks hugely popular. Without 
this deep learning algorithm, tasks such as object recognition, scene understanding, 
and pose estimation would be really challenging. Nowadays, many modern camera 
applications are powered by machine learning (ML), and we just need to take the 
smartphone to see them in action. Computer vision also finds space in microcontrollers, 
although with limitations given the reduced onboard memory.

In this chapter, we will see the benefit of adding sight to our tiny devices by recognizing 
indoor environments with the OV7670 camera module in conjunction with the Arduino 
Nano 33 BLE Sense board.
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In the first part, we will learn how to acquire images from the OV7670 camera module. 
We will then focus on the model design, applying transfer learning with the Keras API 
to recognize kitchens and bathrooms. Finally, we will deploy the quantized TensorFlow 
Lite (TFLite) model on an Arduino Nano with the help of TensorFlow Lite for 
Microcontrollers (TFLu).

The goal of this chapter is to show how to apply transfer learning with TensorFlow and 
learn the best practices of using a camera module with a microcontroller.

In this chapter, we're going to implement the following recipes:

• Taking pictures with the OV7670 camera module

• Grabbing camera frames from the serial port with Python

• Converting QQVGA images from YCbCr422 to RGB888

• Building the dataset for indoor scene classification

• Applying transfer learning with Keras

• Preparing and testing the quantized TFLite model

• Reducing RAM usage by fusing crop, resize, rescale, and quantize

Technical requirements
To complete all the practical recipes of this chapter, we will need the following:

• An Arduino Nano 33 BLE Sense board

• A micro-USB cable

• 1 x half-size solderless breadboard

• 1 x OV7670 camera module

• 1 x push-button

• 18 x jumper wires (male to female)

• A laptop/PC with either Ubuntu 18.04+ or Windows 10 on x86-64

The source code and additional materials are available in Chapter05 (https://
github.com/PacktPublishing/TinyML-Cookbook/tree/main/
Chapter05).

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter05
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter05
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter05
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Taking pictures with the OV7670 camera 
module
Adding sight to the Arduino Nano is our first step to unlocking computer vision 
applications.

In this first recipe, we will build an electronic circuit to take pictures from the OV7670 
camera module using the Arduino Nano. Once we have assembled the circuit, we will  
use the Arduino pre-built CameraCaptureRawBytes sketch to transmit the pixel 
values over the serial.

The following Arduino sketch contains the code referred to in this recipe:

• 01_camera_capture.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter05/ArduinoSketches/01_camera_capture.ino

Getting ready
The OV7670 camera module is the main ingredient required in this recipe to take  
pictures with the Arduino Nano. It is one of the most affordable cameras for TinyML 
applications – you can buy it from various distributors for less than $10. Cost is not the 
only reason we went for this sensor, though. Other factors make this device our preferred 
option, such as the following:

• Frame resolution and color format support: Since microcontrollers have limited 
memory, we should consider cameras capable of transferring low-resolution images. 
The OV7670 camera unit is a good choice because it can output QVGA (320x240) 
and QQVGA (160x120) pictures. Furthermore, the device can encode the images in 
different color formats, such as RGB565, RGB444, and YUCbCr422.

• Software library support: Camera units can be complicated to control without a 
software driver. Therefore, vision sensors with software library support are generally 
recommended to make the programming straightforward. The OV7670 has a 
support library for the Arduino Nano 33 BLE Sense board (https://github.
com/arduino-libraries/Arduino_OV767X), which is already integrated 
into the Arduino Web Editor.

These factors, along with voltage supply, power consumption, frame rate, and interface, 
are generally pondered when choosing a vision module for TinyML applications. 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/01_camera_capture.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/01_camera_capture.ino
https://github.com/arduino-libraries/Arduino_OV767X
https://github.com/arduino-libraries/Arduino_OV767X
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How to do it...
Let's start this recipe by taking a half breadboard with 30 rows and 10 columns and 
mounting the Arduino Nano vertically among the left and right terminal strips, as shown 
in the following figure:

Figure 5.1 – The Arduino Nano mounted vertically between the left and right terminal strips

The following steps will show how to assemble the circuit with the Arduino Nano, 
OV7670 module, and a push-button:

1. Connect the OV7670 camera module to the Arduino Nano by using 16 male-to-
female jumper wires, as illustrated in the following diagram:

Figure 5.2 – Wiring between the Arduino Nano and OV7670
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Although the OV7670 has 18 pins, we only need to connect 16 of them.

The OV7670 camera module is connected to the Arduino Nano following the 
arrangement needed for the Arduino_OV767X support library.

Tip
You can find the pin arrangement required by the Arduino_OV767x 
support library at the following link:

https://github.com/arduino-libraries/Arduino_
OV767X/blob/master/src/OV767X.h

2. Add a push-button on the breadboard and connect it to P0.30 and GND:

Figure 5.3 – Push-button connected between P0.30 and GND
The push-button does not need an additional resistor because we will employ the 
microcontroller pull-up one.

https://github.com/arduino-libraries/Arduino_OV767X/blob/master/src/OV767X.h
https://github.com/arduino-libraries/Arduino_OV767X/blob/master/src/OV767X.h
https://github.com/arduino-libraries/Arduino_OV767X/blob/master/src/OV767X.h
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Now, open the Arduino IDE and follow these steps to implement a sketch to take pictures 
whenever we press the push-button:

1. Open the CameraCaptureRawBytes sketch from Examples->FROM 
LIBRARIES->ARDUINO_OV767X:

Figure 5.4 – CameraCaptureRawBytes sketch
Copy the content of CameraCaptureRawBytes in a new sketch.

2. Declare and initialize a global mbed::DigitalIn object to read the push-button 
state:

mbed::DigitalIn  button(p30);

#define PRESSED 0

Next, set the button mode to PullUp in the setup() function:
button.mode(PullUp);

3. Set the baud rate of the serial peripheral to 115600 in the setup() function:

Serial.begin(115600);

4. Add an if statement in the loop() function to check whether the push-button is 
pressed. If the button is pressed, take a picture from the OV7670 camera and send 
the pixel values over the serial:

if(button == PRESSED) {

  Camera.readFrame(data);

  Serial.write(data, bytes_per_frame);

}
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Note
The variables' names in the pre-built CameraCaptureRawBytes are in 
PascalCase, so the first letter of each word is capitalized. To keep consistency 
with the lowercase naming convention used in the book, we have renamed 
BytesPerFrame to bytes_per_frame.

Compile and upload the sketch on the Arduino Nano. Now, you can open the serial 
monitor by clicking on Monitor from the Editor menu. From there, you will see all the 
pixels values transmitted whenever you press the push-button.

Grabbing camera frames from the serial port 
with Python
In the previous recipe, we showed how to take images from the OV7670, but we didn't 
present a method for displaying them.

This recipe will use Python to parse the pixel values transmitted serially to display the 
captured pictures on the screen.

The following Arduino sketch and Python script contain the code referred to in this 
recipe:

• 02_camera_capture_qvga_rgb565.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter05/ArduinoSketches/02_camera_capture_qvga_
rgb565.ino

• 02_parse_camera_frame.py: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter05/PythonScripts/02_parse_camera_frame.py

Getting ready
In contrast to all Python programs developed so far, we will write the Python script on our 
local machine to access the serial port used by the Arduino Nano. 

Parsing serial data with Python requires little effort with the pySerial library, which can 
be installed through the pip Python package manager:

$ pip install pyserial

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/02_camera_capture_qvga_rgb565.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/02_camera_capture_qvga_rgb565.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/02_camera_capture_qvga_rgb565.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/PythonScripts/02_parse_camera_frame.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/PythonScripts/02_parse_camera_frame.py
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However, pySerial will not be the only module required for this recipe. Since we need 
to create images from the data transmitted over the serial, we will use the Python Pillow 
library (PIL) to facilitate this task.

The PIL module can be installed with the following pip command:

$ pip install Pillow

However, what data format should we expect from the microcontroller?

Transmitting RGB888 images over the serial
To simplify the parsing of the pixels transmitted over the serial, we will make some 
changes in the Arduino sketch of the previous recipe to send images in RGB888 format. 
This format packs the pixel in 3 bytes, using 8 bits for each color component.

Using RGB888 means that our Python script can directly create the image with PIL 
without extra conversions.

However, it is a good practice to transmit the image with metadata to simplify the parsing 
and check communication errors.

In our case, the metadata will provide the following information:

1. The beginning of the image transmission: We send the <image> string to signify the 
beginning of the communication.

2. The image resolution: We send the image resolution as a string of digits to say how 
many RGB pixels will be transmitted. The width and height will be sent on two 
different lines.

3. The completion of the image transmission: Once we have sent all pixel values, we 
transmit the </image> string to notify the end of the communication.

The pixel values will be sent right after the image resolution metadata and following the 
top to bottom, left to right order (raster scan order):

Figure 5.5 – Raster scan order
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The color components will be sent as strings of digits terminated with a newline character 
(\n) and following the RGB ordering. Therefore, the red channel comes first and the blue 
one last, as shown in the following diagram:

Figure 5.6 – Communication protocol for the serial transmission of an RGB image

As you can observe from the preceding illustration, the pixel values are transmitted 
following the raster scanning order. Each color component is sent as a string of digits 
terminated with a newline character (\n).

However, the OV7670 camera is initialized to output images in the RGB565 color  
format. Therefore, we need to convert the camera pixels to RGB888 before sending  
them over the serial.

Learning how to convert RGB565 to RGB888
As you may have noticed, RGB565 is the format used in the camera initialization of the 
CameraCaptureRawBytes sketch:

Camera.begin(QVGA, RGB565, 1)



170     Indoor Scene Classification with TensorFlow Lite for Microcontrollers and the Arduino Nano

RGB565 packs the pixel in 2 bytes, reserving 5 bits for the red and blue components and 6 
bits for the green one:

Figure 5.7 – RGB565 color format

This color format finds applicability mainly in embedded systems with limited memory 
capacity since it reduces the image size. However, memory reduction is achieved by 
reducing the dynamic range of the color components. 

How to do it...
In the following steps, we will see what to change in the Arduino sketch of the previous 
recipe to send the RGB888 pixels over the serial. Once the sketch is implemented, we will 
write a Python script to display the image transmitted over the serial on the screen:

1. Write a function to convert the RGB565 pixel to RGB888:

void rgb565_rgb888(uint8_t* in, uint8_t* out) {

  uint16_t p = (in[0] << 8) | in[1];

  out[0] = ((p >> 11) & 0x1f) << 3;

  out[1] = ((p >> 5) & 0x3f) << 2;

  out[2] = (p & 0x1f) << 3;

}

The function takes 2 bytes from the input buffer to form the 16-bit RGB565 pixel. 
The first byte (in[0]) is left-shifted by eight positions to place it in the higher half 
of the uint16_t p variable. The second byte (in[1]) is set in the lower part:

Figure 5.8 – The RGB565 pixel is formed with in[0] and in[1] bytes
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Once we have the 16-bit pixel, we get the 8-bit color components from p by  
right-shifting each channel towards the beginning of the least significant byte:

 � The 8-bit red channel (out[0]) is obtained by shifting p by 11 positions so  
that R0 is the first bit of the uint16_t variable. After, we clear all the non-red 
bits by applying a bitmask with 0x1F (all bits cleared except the first five).

 � The 8-bit green channel (out[1]) is obtained by shifting p by five positions so 
that G0 is the first bit of the uint16_t variable. After, we clear all the non-green 
bits by applying a bitmask with 0x3F (all bits cleared except the first six).

 � The 8-bit blue channel (out[2]) is obtained without shifting because B0 is 
already the first bit of the uint16_t variable. Therefore, we just need to clear  
the non-blue bits by applying a bitmask with 0x1F (all bits cleared except the  
first five).

In the end, we perform an extra left-shifting to move the most significant bit of each 
channel to the eighth position of the byte.

2. Enable testPattern in the setup() function:

Camera.testPattern();

The Camera module will always return a fixed image with color bands when the 
test pattern mode is enabled.

3. In the loop() function, replace Serial.write(data, bytes_per_frame) 
with the routine to send the RGB888 pixels over the serial:

Camera.readFrame(data);

uint8_t rgb888[3];

Serial.println("<image>");    

Serial.println(Camera.width());

Serial.println(Camera.height());

const int bytes_per_pixel = Camera.bytesPerPixel(); 

for(int i = 0; i < bytes_per_frame; i+=bytes_per_pixel) {

  rgb565_rgb888(&data[i], &rgb888[0]);

  Serial.println(rgb888[0]);

  Serial.println(rgb888[1]);

  Serial.println(rgb888[2]);

}

Serial.println("</image>");
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The communication starts by sending the <image> string and the resolution of the 
image (Camera.width(), Camera.height()) over the serial.

Next, we iterate all bytes stored in the camera buffer and apply the RGB565 
to RGB888 conversion with the rgb565_rgb888() function. Every color 
component is then sent as a string of digits with the newline character (\n).

When we complete the conversion, we send the </image> string to signify the end 
of the data transmission.

Now, you can compile and upload the sketch on the Arduino Nano.
4. On your computer, create a new Python script and import the following modules:

import numpy as np

import serial

from PIL import Image 

5. Initialize pySerial with the port and baud rate used by the Arduino Nano's 
microcontroller:

port = '/dev/ttyACM0'

baudrate = 115600

ser = serial.Serial()

ser.port     = port

ser.baudrate = baudrate

The easiest way to check the serial port name is from the device drop-down menu 
in the Arduino IDE:

Figure 5.9 – Device drop-down menu in the Arduino Web Editor
In the preceding screenshot, the serial port name is /dev/ttyACM0.

Then, open the serial port and discard the content in the input buffer:
ser.open()

ser.reset_input_buffer()
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6. Create a utility function to return a line from the serial port as a string:

def serial_readline():

  data = ser.readline

  return data.decode("utf-8").strip()

The string transmitted by the Arduino Nano over the serial is encoded in UTF-8 
and terminates with the newline character. Therefore, we decode the UTF-8 
encoded bytes and remove the newline character with .decode("utf-8") and 
.strip().

7. Create a 3D NumPy array to store the pixel values transmitted over the serial. Since 
the Arduino Nano will send the frame resolution, you can initialize the width and 
height with 1 and resize the NumPy array later when parsing the serial stream:

width  = 1

height = 1

num_ch = 3

image = np.empty((height, width, num_ch), dtype=np.uint8)

8. Use a while loop to read the serial data line by line:

while True:

  data_str = serial_readline()

Check whether we have the <image> metadata:
  if str(data_str) == "<image>":

If so, parse the frame resolution (width and height) and resize the NumPy array 
accordingly:

    w_str = serial_readline()

    h_str = serial_readline()

    w = int(w_str)

    h = int(h_str)

    if w != width or h != height:

      if w * h != width * height:

        image.resize((h, w, num_ch))

      else:

        image.reshape((h, w, num_ch))

      width  = w

      height = h
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9. Once you know the frame resolution, parse the pixel values transmitted over the 
serial, and store them in the NumPy array:

      for y in range(0, height):

          for x in range(0, width):

              for c in range(0, num_ch):

                  data_str = serial_readline()

                  image[y][x][c] = int(data_str)

To have a more efficient solution, you may consider the following alternative code 
without nested for loops:

for i in range(0, width * height * num_ch):

  c = int(i % num_ch)

  x = int((i / num_ch) % width)

  y = int((i / num_ch) / width)

  data_str = serial_readline()

image[y][x][c] = int(data_str)

10. Check if the last line contains the </image> metadata. If so, display the image on 
the screen:

      data_str = serial_readline()

      if str(data_str) == "</image>":

        image_pil = Image.fromarray(image)

        image_pil.show()

Keep the Arduino Nano connected to your machine and run the Python script. Now, 
whenever you press the push-button, the Python program will parse the data transmitted 
over the serial and, after a few seconds, show an image with eight color bands, as reported 
at the following link: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/
Chapter05/test_qvga_rgb565.png

If you do not get the image with the test pattern just described, we recommend checking 
the wiring between the camera and the Arduino Nano.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/test_qvga_rgb565.png
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/test_qvga_rgb565.png
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/test_qvga_rgb565.png
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Converting QQVGA images from YCbCr422 to 
RGB888
When compiling the previous sketch on Arduino, you may have noticed the Low memory 
available, stability may occur warning in the Arduino IDE output log.

The Arduino IDE returns this warning because the QVGA image with the RGB565 color 
format needs a buffer of 153.6 KB, which is roughly 60% of the SRAM available in the 
microcontroller. 

In this recipe, we will show how to acquire an image at a lower resolution and use the 
YCbCr422 color format to prevent image quality degradation.

The following Arduino sketch contains the code referred to in this recipe:

• 03_camera_capture_qqvga_ycbcr422.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter05/ArduinoSketches/03_camera_capture_qqvga_
ycbcr422.ino

Getting ready
The main ingredients to reduce the image size are behind the resolution and color format.

Images are well known for requiring big chunks of memory, which might be a problem 
when dealing with microcontrollers. 

Lowering the image resolution is a common practice to reduce the image memory size.
Standard resolution images adopted on microcontrollers are generally smaller than QVGA 
(320x240), such as QQVGA (160x120) or QQQVGA (80x60). Even lower-resolution 
images exist, but they are not always suitable for computer vision applications.

Color encoding is the other lever to reduce the image memory size. As we saw in the 
previous recipe, the RGB565 format saves memory by lowering the color components' 
dynamic range. However, the OV7670 camera module offers an alternative and more 
efficient color encoding: YCbCr422.

Converting YCbCr422 to RGB888
YCbCr422 is digital color encoding that does not express the pixel color in terms of red, 
green, and blue intensities but rather in terms of brightness (Y), blue-difference (Cb), and 
red-difference (Cr) chroma components.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/03_camera_capture_qqvga_ycbcr422.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/03_camera_capture_qqvga_ycbcr422.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/03_camera_capture_qqvga_ycbcr422.ino
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The OV7670 camera module can output images in YCbCr422 format, which means that 
Cb and Cr are shared between two consecutive pixels on the same scanline. Therefore,  
4 bytes are used to encode 2 pixels:

Figure 5.10 – 4 bytes in YCbCr422 format packs 2 RGB888 pixels

Although YCbCr422 still needs 2 bytes per pixel as RGB565, it offers better image quality.

The following table reports the formulas to accomplish the color conversion from 
YCbCr422 to RGB888 using just integer arithmetic operations:

Figure 5.11 – Table reporting the formulas to convert YCbCr422 to RGB888

The i subscript in Ri, Gi, Bi, and Yi represents the pixel index, either 0 (the first pixel) or 1 
(the second pixel).

How to do it...
Open the Arduino sketch written in the previous recipe and make the following changes 
to acquire QQVGA YCbCr422 images from the OV7670 camera module:

1. Resize the camera buffer (data) to accommodate a QQVGA image in YCbCr422 
color format:

byte data[160 * 120 * 2];

The QQVGA resolution makes the buffer four times smaller than the one used in 
the previous recipe.
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2. Write a function to get an RGB888 pixel from the Y, Cb, and Cr components:

template <typename T>

inline T clamp_0_255(T x) {

  return std::max(std::min(x, (T)255)), (T)(0));

}

void ycbcr422_rgb888(int32_t Y, int32_t Cb,  

                     int32_t Cr, uint8_t* out) {

  Cr = Cr - 128;

  Cb = Cb - 128;

  out[0] = clamp_0_255((int)(Y + Cr + (Cr >> 2) + 

                            (Cr >> 3) + (Cr >> 5)));

  out[1] = clamp_0_255((int)(Y - ((Cb >> 2) + (Cb >> 4) +

                            (Cb >> 5)) - ((Cr >> 1) +

                            (Cr >> 3) + (Cr >> 4)) +

                            (Cr >> 5)));

  out[2] = clamp_0_255((int)(Y + Cb + (Cb >> 1) +

                            (Cb >> 2) + (Cb >> 6)));

}

The function returns two pixels because the Cb and Cr components are shared 
between two pixels.

The conversion is performed using the formulas provided in the Getting ready 
section.

Attention
Please note that the OV7670 driver returns the Cr component before the  
Cb one.

3. Initialize the OV7670 camera to capture QQVGA frames with YCbCr422 (YUV422) 
color format in the setup() function:

if (!Camera.begin(QQVGA, YUV422, 1)) {

  Serial.println("Failed to initialize camera!");

  while (1);

}
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Unfortunately, the OV7670 driver interchanges YCbCr422 with YUV422, leading to 
some confusion. The main difference between YUV and YCbCr is that YUV is for 
analog TV. Therefore, although we pass YUV422 to Camera.begin(), we actually 
initialize the device for YCbCr422.

4. In the loop() function, remove the statement that iterates over the RGB565 pixels 
stored in the previous camera buffer. Next, write a routine to read 4 bytes from the 
YCbCr422 camera buffer and return two RGB888 pixels:

const int step_bytes = Camera.bytesPerPixel() * 2;

for(int i = 0; i < bytes_per_frame; i+=step_bytes) {

  const int32_t Y0 = data[i + 0];

  const int32_t Cr = data[i + 1];

  const int32_t Y1 = data[i + 2];

  const int32_t Cb = data[i + 3];

  ycbcr422_to_rgb888_i(Y0, Cb, Cr, &rgb888[0]);

  Serial.println(rgb888[0]);

  Serial.println(rgb888[1]);

  Serial.println(rgb888[2]);

  ycbcr422_to_rgb888_i(Y1, Cb, Cr, &rgb888[0]);

  Serial.println(rgb888[0]);

  Serial.println(rgb888[1]);

  Serial.println(rgb888[2]);

}

Compile and upload the sketch on the Arduino Nano. Execute the Python script and 
press the push-button on the breadboard. After a few seconds, you should see on 
the screen, again, an image with eight color bands, as reported at the following link: 
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/
Chapter05/test_qqvga_ycbcr422.png.

The image should be smaller but with more vivid colors than the one captured with the 
RGB565 format.

Building the dataset for indoor scene 
classification
Now that we can capture frames from the camera, it is time to create the dataset for 
classifying indoor environments.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/test_qqvga_ycbcr422.png
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/test_qqvga_ycbcr422.png
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In this recipe, we will construct the dataset by collecting the kitchen and bathroom images 
with the OV7670 camera.

The following Python script contains the code referred to in this recipe:

• 04_build_dataset.py: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter05/PythonScripts/04_build_dataset.py

Getting ready
Training a deep neural network from scratch for image classification commonly requires  
a dataset with 1,000 images per class. As you might guess, this solution is impractical for 
us since collecting thousands of pictures takes a lot of time.

Therefore, we will consider an alternative ML technique: transfer learning.

Transfer learning is a popular method that uses a pre-trained model to train a deep neural 
network with a small dataset. This ML technique will be used in the following recipe and 
only requires a dataset with just 20 samples per class to get a basic working model.

How to do it...
Before implementing the Python script, remove the test pattern mode (Camera.
testPattern()) in the Arduino sketch so that you can get live images. After that, 
compile and upload the sketch on the platform.

The Python script implemented in this recipe will reuse part of the code developed in the 
earlier Grabbing camera frames from the serial port with Python recipe. The following steps 
will show what changes to make in the Python script to save the captured images as .png 
files and build a dataset for recognizing kitchens and bathrooms:

1. Import the UUID Python module:

import uuid

UUID will be used to produce unique filenames for .png files.
2. Add a variable at the beginning of the program for the label's name:

label = "test"

The label will be the prefix for the filename of the .png files.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/PythonScripts/04_build_dataset.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/PythonScripts/04_build_dataset.py


180     Indoor Scene Classification with TensorFlow Lite for Microcontrollers and the Arduino Nano

3. After receiving the image over the serial, crop it into a square shape and display it 
on the screen:

crop_area = (0, 0, height, height)

image_pil = Image.fromarray(image)

image_cropped = image_pil.crop(crop_area)

image_cropped.show()

We crop the acquired image from the serial port into a square shape because the 
pre-trained model will consume an input with a square aspect ratio. We crop the 
left side of the image by taking an area with dimensions matching the height of the 
original picture, as shown in the following figure:

Figure 5.12 – Cropping area
The picture is then displayed on the screen.

4. Ask the user if the image can be saved and read the response with the Python 
input() function. If the user types y from the keyboard, ask for the label's name 
and save the image as a .png file:

key = input("Save image? [y] for YES: ")

  if key == 'y':

    str_label = "Write label or leave it blank to use 
[{}]: ".format(label)

    label_new = input(str_label)

    if label_new != '':

      label = label_new

    unique_id = str(uuid.uuid4())

    filename = label + "_"+ unique_id + ".png"

    image_cropped.save(filename)
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If the user leaves the label empty, the program will use the last label provided.

The filename for the .png file is <label>_<unique_id>, where <label> is the 
label chosen by the user and <unique_id> is the unique identifier generated by 
the UUID library.

5. Acquire 20 images of kitchens and the bathrooms with the OV7670 camera. Since 
we only take a few pictures per class, we recommend you point the camera to 
specific elements of the rooms.

Remember to take 20 pictures for the unknown class as well, representing cases 
where we have neither a kitchen nor a bathroom.

Once you have acquired all the images, put them in separate subdirectories, matching the 
name of the corresponding class, as shown in the following directory structure:

Figure 5.13 – Example of a directory structure

In the end, generate a .zip file with the three folders.

Transfer learning with Keras
Transfer learning is an effective technique for getting immediate results with deep learning 
when dealing with small datasets.

In this recipe, we will apply transfer learning alongside the MobileNet v2 pre-trained 
model to recognize indoor environments.

The following Colab notebook (the Transfer learning with Keras section) contains the code 
referred to in this recipe:

• prepare_model.ipynb: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter05/ColabNotebooks/prepare_model.ipynb

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipynb
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Getting ready
Transfer learning exploits a pre-trained model to obtain a working ML model in a  
short time.

When doing image classification with transfer learning, the pre-trained model 
(convolution based network) is coupled with a trainable classifier (head), as shown  
in the following figure:

Figure 5.14 – Model architecture with transfer learning

As you can observe from the previous illustration, the pre-trained model is the backbone 
of feature extraction and feeds the classifier, commonly made of global pooling, dense, 
and softmax layers.

In our scenario, we will only train the classifier. Hence, the pre-trained model will be frozen 
and act as a fixed feature extractor.

Keras provides different pre-trained models, such as VGG16, ResNet50, InceptionV3, 
MobileNet, and so on. Therefore, which one should we use?

When considering a pre-trained model for TinyML, model size is the metric to keep in 
mind to fit the deep learning architecture into memory-constrained devices.

From the list of pre-trained models offered by Keras (https://keras.io/api/
applications/), MobileNet v2 is the network with fewer parameters and tailored for 
being deployed on target devices with reduced computational power.

Exploring the MobileNet network design choices
MobileNet v2 is the second generation of MobileNet networks and, compared to the 
previous one (MobileNet v1), it has half as many operations and higher accuracy.

This model is the perfect place to take a cue from the architectural choices that made 
MobileNet networks small, fast, and accurate for edge inferencing.

https://keras.io/api/applications/
https://keras.io/api/applications/
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One of the successful design choices that made the first generation of MobileNet networks 
suitable for edge inferencing was the adoption of depthwise convolution. 

As we know, traditional convolution layers are well known for being computationally 
expensive. Furthermore, when dealing with 3x3 or greater kernel sizes, this operator 
typically needs extra temporary memory to lower the computation to a matrix 
multiplication routine.

The idea behind MobileNet v1 was to replace standard convolution 2D with depthwise 
separable convolution, as shown in the following diagram:

Figure 5.15 – Depthwise separable convolution

As you can observe from the preceding illustration, depthwise separable convolution 
consists of a depthwise convolution with a 3x3 filter size followed by a convolution layer 
with a 1x1 kernel size (also known as pointwise convolution). This solution brings less 
trainable parameters, less memory usage, and a lower computational cost.

Tip
Chapter 7, Running a Tiny CIFAR-10 Model on a Virtual Platform with the 
Zephyr OS will provide more information on the benefits given by depthwise 
separable convolution.

The computational cost on MobileNet v2 was reduced further by performing the 
convolutions on tensors with fewer channels.

From an ideal computational perspective, all the layers should work on tensors with few 
channels (feature maps) to improve the model latency. Practically, and from an accuracy 
perspective, it means that our compact tensors can keep the relevant features for the 
problem we want to solve.
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Depthwise separable convolution alone cannot help because a reduction in the number of 
feature maps causes a drop in the model accuracy. Therefore, MobileNet v2 introduced 
the bottleneck residual block to keep the number of channels used in the network 
smaller:

Figure 5.16 – Bottleneck residual block

The bottleneck residual block acts as a feature compressor. As illustrated in the preceding 
diagram, the input is processed by the pointwise convolution, which expands (or 
increases) the number of features maps. Then, the convolution's output feeds the 
depthwise separable convolution layer to compress the features in fewer output channels.

How to do it...
Create a new Colab notebook. Next, upload the .zip file containing the dataset 
(dataset.zip) by using the upload button at the top of the file explorer: 

Figure 5.17 – Upload button at the top of the file explorer
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Now, follow these steps to apply transfer learning with the MobileNet v2 pre-trained 
model:

1. Unzip the dataset:

import zipfile

with zipfile.ZipFile("dataset.zip", 'r') as zip_ref:

  zip_ref.extractall(".")

data_dir = "dataset"

2. Prepare the training and validation datasets:

train_ds = tf.keras.utils.image_dataset_from_directory(

  data_dir,

  validation_split=0.2,

  subset="training",

  seed=123,

  interpolation="bilinear",

  image_size=(48, 48))

val_ds = tf.keras.utils.image_dataset_from_directory(

  data_dir,

  validation_split=0.2,

  subset="validation",

  seed=123,

  interpolation="bilinear",

  image_size=(48, 48))

3. The preceding code resizes the input images to 48x48 with the bilinear interpolation 
and produces the training and validation datasets with an 80/20 split.

4. Rescale the pixel values from [0, 255] to [-1, 1]:

rescale = tf.keras.layers.Rescaling(1./255, offset= -1)

train_ds = train_ds.map(lambda x, y: (rescale(x), y))

val_ds   = val_ds.map(lambda x, y: (rescale(x), y))

The reason for rescaling the pixels values from [0, 255] to [-1, 1] is because the 
pre-trained model expects this interval data range for the input tensor.
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5. Import the MobileNet v2 pre-trained model with the weights trained on the 
ImageNet dataset and alpha=0.35. Furthermore, set the input image at the  
lowest resolution allowed by the pre-trained model (48, 48, 3) and exclude the  
top (fully-connected) layers:

base_model = MobileNetV2(input_shape=(48, 48, 3),

                         include_top=False,

                         weights='imagenet',

                         alpha=0.35)

Keras offers more than one variant of MobileNet v2. From the list of MobileNet 
v2 Keras models (https://github.com/keras-team/keras-
applications/blob/master/keras_applications/mobilenet_
v2.py), we choose mobilenet_v2_0.35_96, which has the smallest input size 
(48,48,3) and the smallest alpha value (0.35). 

6. Freeze the weights so that you do not update these values during training:

base_model.trainable = False

feat_extr = base_model

7. Augment the input data:

augmen = tf.keras.Sequential([

tf.keras.layers.experimental.preprocessing.
RandomFlip('horizontal'),  tf.keras.layers.experimental.
preprocessing.RandomRotation(0.2),])

train_ds = train_ds.map(lambda x, y: (augmen(x), y))

val_ds = val_ds.map(lambda x, y: (augmen(x), y))

Since we don't have a large dataset, we recommend artificially applying some 
random transformations on the images to prevent overfitting.

8. Prepare the classification head with a global pooling followed by a dense layer with 
a softmax activation:

global_avg_layer = tf.keras.layers.
GlobalAveragePooling2D()

dense_layer = tf.keras.layers.Dense(3, 

                                    activation='softmax')

https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet_v2.py
https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet_v2.py
https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet_v2.py
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9. Build the model architecture:

inputs = tf.keras.Input(shape=MODEL_INPUT_SIZE)

x = global_avg_layer(feat_extr.layers[-1].output)

x = tf.keras.layers.Dropout(0.2)(x)

outputs = dense_layer(x)

model = tf.keras.Model(inputs=feat_extr.inputs, 

                       outputs=outputs)

We recommend passing training=False to the feature extractor module to not 
update the batch normalization layers' internal variables (mean and variance) in 
MobileNet v2.

10. Compile the model with a 0.0005 learning rate:

lr = 0.0005

model.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate=lr),

loss=tf.losses.SparseCategoricalCrossentropy(from_
logits=False),

metrics=['accuracy'])

The default learning rate used by TensorFlow is 0.001. The reason for reducing the 
learning rate to 0.0005 is to prevent overfitting.

11. Train the model with 10 epochs:

model.fit(

  train_ds,

  validation_data=val_ds,

  epochs=10)

The expected accuracy on the validation dataset should be around 90% or more.
12. Save the TensorFlow model as SavedModel:

model.save("indoor_scene_recognition")

The model is now ready to be quantized with the TFLite converter.
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Preparing and testing the quantized TFLite 
model
As we know from Chapter 3, Building a Weather Station with TensorFlow Lite for 
Microcontrollers, the model requires quantization to 8 bits to run more efficiently on a 
microcontroller. However, how do we know if the model can fit into the Arduino Nano? 
Furthermore, how do we know if the quantized model preserves the accuracy of the 
floating-point variant?

These questions will be answered in this recipe, where we will show how to evaluate the 
program memory utilization and the accuracy of the quantized model generated by the 
TFLite converter. After analyzing the memory usage and accuracy validation, we will 
convert the TFLite model to a C-byte array.

The following Colab notebook (the Preparing and testing the quantized TFLite model 
section) contains the code referred to in this recipe:

• prepare_model.ipynb: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter05/ColabNotebooks/prepare_model.ipynb

Getting ready
The model's memory requirement and accuracy evaluation should always be done to 
avoid unpleasant surprises when deploying the model on the target device. For example, 
the C-byte array generated from the TFLite model is typically a constant object stored 
in the microcontroller program memory. However, the program memory has a limited 
capacity, and usually, it does not exceed 1 MB.

The memory requirement is not the only problem we may encounter, though. 
Quantization is an effective technique to reduce the model size and significantly improve 
latency. However, the adoption of arithmetic with limited precision may change the 
model's accuracy. For this reason, it is crucial to assess the accuracy of the quantized 
model to be sure that the application works as expected. Unfortunately, TFLite does not 
provide a built-in function to evaluate the accuracy of the test dataset. Hence, we will need 
to run the quantized TFLite model through the Python TFLite interpreter over the test 
samples to check how many are correctly classified.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipynb
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How to do it...
Let's start by collecting some test samples with the OV7670 camera module. You 
can follow the same steps presented in the early Building the dataset for indoor scene 
classification recipe. You just need to take a few pictures (for example, 10) for each output 
class and create a .zip file (test_samples.zip) with the same folder structure we 
had for the training dataset.

Next, upload the .zip file in Colab and follow the following steps to evaluate the 
accuracy of the quantized model and examine the model size:

1. Unzip the test_samples.zip file:

with zipfile.ZipFile("test_samples.zip", 'r') as zip_ref:

  zip_ref.extractall(".")

test_dir = "test_samples"

2. Resize the test images to 48x48 with bilinear interpolation:

test_ds = tf.keras.utils.image_dataset_from_directory(

  test_dir,

  interpolation="bilinear",

  image_size=(48, 48))

3. Rescale the pixels values from [0, 255] to [-1, 1]:

test_ds = test_ds.map(lambda x, y: (rescale(x), y))

4. Convert the TensorFlow model to TensorFlow Lite format (FlatBuffers) with the 
TensorFlow Lite converter tool. Apply the 8-bit quantization to the entire model 
except for the output layer:

repr_ds = test_ds.unbatch()

def representative_data_gen():

  for i_value, o_value in repr_ds.batch(1).take(60):

    yield [i_value]

TF_MODEL = "indoor_scene_recognition"

converter = tf.lite.TFLiteConverter.from_saved_model(TF_
MODEL)

converter.representative_dataset = tf.lite.
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RepresentativeDataset(representative_data_gen)

converter.optimizations = [tf.lite.Optimize.DEFAULT]

converter.target_spec.supported_ops = [tf.lite.OpsSet.
TFLITE_BUILTINS_INT8]

converter.inference_input_type = tf.int8

tfl_model = converter.convert()

The conversion is done in the same way we did it in Chapter 3, Building a Weather 
Station with TensorFlow Lite for Microcontrollers, except for the output data type.  
In this case, the output is kept in floating-point format to avoid the dequantization 
of the output result.

5. Get the TFLite model size in bytes:

print(len(tfl_model), "bytes")

The generated TFLite object (tfl_model) is what we deploy on the 
microcontroller, which contains the model architecture and the weights of the 
trainable layers. Since the weights are constant, the TFLite model can be stored in 
the microcontroller program memory, and the length of the tfl_model object 
provides its memory usage. The expected model size is 627880, roughly 63% of the 
total program memory. 

6. Initialize the TFLite interpreter:

interpreter = tf.lite.Interpreter(model_content=tfl_
model)

interpreter.allocate_tensors()

Unfortunately, TFLite does not offer pre-built functions to evaluate the model 
accuracy as the TensorFlow counterpart. Therefore, we require running the 
quantized TensorFlow Lite model in Python to evaluate the accuracy of the test 
dataset. The Python TFLite interpreter is responsible for loading and executing the 
TFLite model.

7. Get the input quantization parameters:

i_details = interpreter.get_input_details()[0]

o_details = interpreter.get_output_details()[0]

i_quant = i_details["quantization_parameters"]

i_scale      = i_quant['scales'][0]

i_zero_point = i_quant['zero_points'][0]
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8. Evaluate the accuracy of the quantized TFLite model:

test_ds0 = test_ds.unbatch()

num_correct_samples = 0

num_total_samples   = len(list(test_ds0.batch(1)))

for i_value, o_value in test_ds0.batch(1):

  i_value = (i_value / i_scale) + i_zero_point

  i_value = tf.cast(i_value, dtype=tf.int8)

  interpreter.set_tensor(i_details["index"], i_value)

  interpreter.invoke()

  o_pred = interpreter.get_tensor(o_details["index"])[0]

  if np.argmax(o_pred) == o_value:

    num_correct_samples += 1

print("Accuracy:", num_correct_samples/num_total_samples)

9. Convert the TFLite model to a C-byte array with xxd:

open("model.tflite", "wb").write(tflite_model)

!apt-get update && apt-get -qq install xxd

!xxd -c 60 -i model.tflite > indoor_scene_recognition.h

The command generates a C header file containing the TensorFlow Lite model 
as an unsigned char array. Since the Arduino Web Editor truncates C files 
exceeding 20,000 lines, we recommend passing the -c 60 option to xxd. This 
option increases the number of columns per line from 16 (the default) to 60 to have 
roughly 10,500 lines in the file.

You can now download the indoor_scene_recognition.h file from Colab's  
left pane.

Reducing RAM usage by fusing crop, resize, 
rescale, and quantize
In this last recipe, we will deploy the application on the Arduino Nano. However, a few 
extra operators are needed to recognize indoor environments with our tiny device. 

In this recipe, we will learn how to fuse crop, resize, rescale, and quantize operators  
to reduce RAM usage. These extra operators will be needed to prepare the TFLite  
model's input.
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The following Arduino sketch contains the code referred to in this recipe:

• 07_indoor_scene_recognition.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/
blob/main/Chapter05/ArduinoSketches/07_indoor_scene_
recognition.ino

Getting ready
To get ready for this recipe, we need to know what parts of the application affect RAM 
usage.

RAM usage is impacted by the variables allocated during the program execution, such as 
the input, output, and intermediate tensors of the ML model. However, the model is not 
solely responsible for memory utilization. In fact, the image acquired from the OV7670 
camera needs to be processed with the following operations to provide the appropriate 
input to the model:

1. Convert the color format from YCbCr422 to RGB888.
2. Crop the camera frame to match the input shape aspect ratio of the TFLite model.
3. Resize the camera frame to match the expected input shape of the TFLite model.
4. Rescale the pixel values from [0, 255] to [-1, 1].
5. Quantize the floating-point pixel values.

Each of the preceding operations reads values from a buffer and returns the computation 
result in a new one, as shown in the following figure:

Figure 5.18 – Input preparation pipeline

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/07_indoor_scene_recognition.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/07_indoor_scene_recognition.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/07_indoor_scene_recognition.ino
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Therefore, RAM usage is also affected by the camera frame and intermediate buffers 
passed from one operation to the next.

Our goal is to execute the processing pipeline described previously using as small 
intermediate buffers as possible.

To achieve this goal, the data propagated throughout the pipeline must represent a portion 
of the entire input to be processed. By adopting this technique, commonly called operator 
fusion, the camera frame will be the only considerable chunk of memory to reside in 
RAM in addition to the input, output, and intermediate tensors of the TFLite model.

Before showing how to implement this final recipe, let's see how to implement resizing in 
more detail.

Resizing with bilinear interpolation
Resizing is an image processing function used to alter the image's resolution (width and 
height), as shown in the following figure:

Figure 5.19 – Resize operation

The resulting image is created from the pixels of the input image. Generally, the following 
formulas are applied to map the spatial coordinates of the output pixels with the 
corresponding input ones:

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑜𝑜 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜

 

𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑜𝑜 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ℎ𝑆𝑆𝑒𝑒𝑒𝑒ℎ𝑡𝑡𝑖𝑖
ℎ𝑆𝑆𝑒𝑒𝑒𝑒ℎ𝑡𝑡𝑜𝑜
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From the previous two formulas, (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 ) are the spatial coordinates of the input pixel,  
(𝑥𝑥𝑜𝑜, 𝑦𝑦𝑜𝑜 ) are the spatial coordinates of the output pixel, (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖, ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤𝑖𝑖 ) are the dimensions 
of the input image, and (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜, ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤𝑜𝑜 ) are the dimensions of the output image. As 
we know, a digital image is a grid of pixels. However, when applying the preceding 
two formulas, we don't always get an integer spatial coordinate, which means that the 
actual input sample doesn't always exist. This is one of the reasons why image quality 
degrades whenever we change the resolution of an image. However, some interpolation 
techniques exist to alleviate the problem, such as nearest-neighbor, bilinear, or bicubic 
interpolation.

Bilinear interpolation is the technique adopted in this recipe to improve the image quality 
of the resized image. As shown in the following diagram, this method takes the four 
closest pixels to the input sampling point in a 2x2 grid:

Figure 5.20 – Bilinear interpolation

The interpolation function calculates the output pixel with a weighted average of the  
four nearest pixels to the input sampling point, as described by the formula in the 
previous figure.

In our case, we have shown an example of bilinear interpolation applied to a single 
color component image. However, this method works regardless of the number of color 
components since we can interpolate the values independently.
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How to do it...
Unplug the USB cable from the Arduino Nano and remove the push-button from the 
breadboard. After that, open the Arduino IDE and copy the sketch developed in the 
Converting QQVGA images from YCbCr422 to RGB888 recipe in a new project. Next, 
import the indoor_scene_recognition.h header file into the Arduino IDE.

In the sketch, remove the code in the loop() function and all the references to the  
push-button usages.

The following are the necessary steps to recognize indoor environments with the  
Arduino Nano:

1. Include the indoor_scene_recognition.h header file:

#include "indoor_scene_recognition.h"

2. Include the header files for using the TFLu runtime:

#include <TensorFlowLite.h>

#include <tensorflow/lite/micro/all_ops_resolver.h>

#include <tensorflow/lite/micro/micro_error_reporter.h>

#include <tensorflow/lite/micro/micro_interpreter.h>

#include <tensorflow/lite/schema/schema_generated.h>

#include <tensorflow/lite/version.h>

The header files are the same ones described in Chapter 3, Building a Weather 
Station with TensorFlow Lite for Microcontrollers.

3. Declare the variables related to TFLu initialization/runtime as global:

const tflite::Model* tflu_model            = nullptr;

tflite::MicroInterpreter* tflu_interpreter = nullptr;

TfLiteTensor* tflu_i_tensor                = nullptr;

TfLiteTensor* tflu_o_tensor                = nullptr;

tflite::MicroErrorReporter tflu_error;

constexpr int tensor_arena_size = 144000;

uint8_t *tensor_arena = nullptr;

float   tflu_scale     = 0.0f;

int32_t tflu_zeropoint = 0;
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4. The variables reported in the preceding code are the same ones used in Chapter 3, 
Building a Weather Station with TensorFlow Lite for Microcontrollers, with the only 
exception being the output quantization parameters since they are not required in 
this case. The tensor arena size is set to 144000 to accommodate the input, output, 
and intermediate tensors of the TFLite model.

5. Declare and initialize the resolutions of the cropped camera frame and input shape 
as global variables: 

int height_i = 120; int width_i = hi;

int height_o = 48; int width_o = 48;

Since we crop the camera frame before resizing it, we can make cropping simpler by 
taking a square area matching the height of the camera frame on the left side.

6. Declare and initialize the resolution scaling factors to resize the camera frame as 
global variables:

float scale_x = (float)width_i / (float)width_o;

float scale_y = scale_x;

7. Write the function to calculate the bilinear interpolation for a single color 
component pixel:

uint8_t bilinear_inter(uint8_t v00, uint8_t v01, 

                       uint8_t v10, uint8_t v11,

                       float xi_f, float yi_f,

                       int xi, int yi) {

    const float wx1  = (xi_f - xi);

    const float wx0  = (1.f – wx1);

    const float wy1 = (yi_f - yi);

    const float wy0 = (1.f - wy1);

    return clamp_0_255((v00 * wx0 * wy0) +

                       (v01 * wx1 * wy0) +

                       (v10 * wx0 * wy1) +

                       (v11 * wx1 * wy1));

}

The preceding function calculates the distance-based weights and applies the 
bilinear interpolation formula described in the Getting ready section of this recipe.
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8. Write the function to rescale the pixel values from [0,255] to [-1,1]:

float rescaling(float x, float scale, float offset) {

  return (x * scale) - offset;

}

Next, write the function to quantize the input image:
int8_t quantize(float x, float scale, float zero_point) {

  return (x / scale) + zero_point;

}

Tip
Since rescaling and quantizing are executed one after the other, you may think 
of fusing them in a single function to make the implementation more efficient 
in terms of arithmetic instructions executed.

9. In the setup() function, dynamically allocate the memory for the tensor arena:

tensor_arena = (uint8_t *)malloc(tensor_arena_size);

We allocate the tensor arena with the malloc() function to place the memory in 
the heap. As we know, the heap is the area of RAM related to the dynamic memory 
and can only be released explicitly by the user with the free() function. The heap 
is opposed to the stack memory, where the data lifetime is limited to the scope. 
The stack and heap memory sizes are defined in the startup code, executed by the 
microcontroller when the system resets. Since the stack is typically much smaller 
than the heap, it is preferable to allocate the TFLu working space in the heap 
because the tensor arena takes a significant portion of RAM (144 KB).

10. Load the indoor_scene_recognition model, initialize the TFLu interpreter, 
and allocate the tensors: shankar

  tflu_model = tflite::GetModel(

    indoor_scene_recognition);

  tflite::AllOpsResolver tflu_ops_resolver;

tflu_interpreter = new tflite::MicroInterpreter(tflu_
model, tflu_ops_resolver, tensor_arena, tensor_arena_
size, &tflu_error);

  tflu_interpreter->AllocateTensors();
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Next, get the pointers to the input and output tensors:
  tflu_i_tensor = tflu_interpreter->input(0);

  tflu_o_tensor = tflu_interpreter->output(0);

Finally, get the input quantization parameters:
  const auto* i_quantization = 

    reinterpret_cast<TfLiteAffineQuantization*>(

    tflu_i_tensor->quantization.params);

  tflu_scale     = i_quantization->scale->data[0];

  tflu_zeropoint = i_quantization->zero_point->data[0];

}

11. Iterate over the spatial coordinates of the MobileNet v2 input shape in the loop() 
function. Then, calculate the corresponding sampling point position for each output 
coordinate. Next, round down to the nearest integer value the sampling point 
coordinate:

for (int yo = 0; yo < height_o; yo++) {

  float yi_f = (yo * scale_y);

  int yi = (int)std::floor(yi_f);

  for(int xo = 0; xo < width_o; xo++) {

    float xi_f = (xo * scale_x);

    int xi = (int)std::floor(xi_f);

As you can observe from the code, we iterate over the spatial coordinates of the 
MobileNet v2 input shape (48x48). For each xo and yo, we calculate the sampling 
position (xi_f and yi_f) in the camera frame required for the resize operation. 
Since we apply bilinear interpolation to resize the image, we round down to the 
nearest integer xi_f and yi_f to get the spatial coordinates of the top-left pixel in 
the 2x2 sampling grid.

Once you have the input coordinates, calculate the camera buffer offsets to read the 
four YCbCr422 pixels needed for the bilinear interpolation:

    int x0 = xi;

    int y0 = yi;

    int x1 = std::min(xi + 1, width_i - 1);            

    int y1 = std::min(yi + 1, height_i - 1);

    int stride_in_y = Camera.width() * bytes_per_pixel;

    int ix_y00 = x0 * sizeof(int16_t) + y0 * stride_in_y;
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    int ix_y01 = x1 * sizeof(int16_t) + y0 * stride_in_y;

    int ix_y10 = x0 * sizeof(int16_t) + y1 * stride_in_y;

    int ix_y11 = x1 * sizeof(int16_t) + y1 * stride_in_y;

12. Read the Y component for each of the four pixels:

    int Y00 = data[ix_y00];

    int Y01 = data[ix_y01];

    int Y10 = data[ix_y10];

    int Y11 = data[ix_y11];

Next, read the red-difference components (Cr):
    int offset_cr00 = xi % 2 == 0? 1 : -1;

    int offset_cr01 = (xi + 1) % 2 == 0? 1 : -1;

    int Cr00 = data[ix_y00 + offset_cr00];

    int Cr01 = data[ix_y01 + offset_cr01];

    int Cr10 = data[ix_y10 + offset_cr00];

    int Cr11 = data[ix_y11 + offset_cr01];

After, read the blue-difference components (Cb):
    int offset_cb00 = offset_cr00 + 2;

    int offset_cb01 = offset_cr01 + 2;  

    int Cb00 = data[ix_y00 + offset_cb00];

    int Cb01 = data[ix_y01 + offset_cb01];

    int Cb10 = data[ix_y10 + offset_cb00];

    int Cb11 = data[ix_y11 + offset_cb01];

13. Convert the YCbCr422 pixels to RGB888:

    uint8_t rgb00[3], rgb01[3], rgb10[3], rgb11[3];

    ycbcr422_rgb888(Y00, Cb00, Cr00, rgb00);

    ycbcr422_rgb888(Y01, Cb01, Cr01, rgb01);

    ycbcr422_rgb888(Y10, Cb10, Cr10, rgb10);

    ycbcr422_rgb888(Y11, Cb11, Cr11, rgb11);

14. Iterate over the channels of the RGB pixels:

    uint8_t c_i; float c_f; int8_t c_q;

    for(int i = 0; i < 3; i++) {
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For each color component, apply bilinear interpolation:
      c_i = bilinear(rgb00[i], rgb01[i], 

                     rgb10[i], rgb11[i],

                     xi_f, yi_f, xi, yi);

Next, rescale and quantize the color component:
      c_f = rescale((float)c, 1.f/255.f, -1.f);

      c_q = quantize(c_f, tflu_scale, tflu_zeropoint);

In the end, store the quantized color component in the input tensor of the TFLite 
model and close the for loop that iterates over the spatial coordinates of the 
MobileNet v2 input shape:

      tflu_i_tensor->data.int8[idx++] = c_q;

    }

  }

}

15. Run the model inference and return the classification result over the serial:

TfLiteStatus invoke_status = tflu_interpreter->Invoke();

  size_t ix_max = 0;

  float  pb_max = 0;

  for (size_t ix = 0; ix < 3; ix++) {

    if(tflu_o_tensor->data.f[ix] > pb_max) {

      ix_max = ix;

      pb_max = tflu_o_tensor->data.f[ix];

    }

  }

  const char *label[] = {"bathroom", "kitchen", 
"unknown"};

  Serial.println(label[ix_max]);

Compile and upload the sketch on the Arduino Nano. Your application should now 
recognize your rooms and report the classification result in the serial monitor!



6
Building  

a Gesture-Based 
Interface for 

YouTube Playback
Gesture recognition is a technology that interprets human gestures to allow people to 
interact with their devices without touching buttons or displays. This technology is now  
in various consumer electronics (for example, smartphones and game consoles) and 
involves two principal ingredients: a sensor and a software algorithm.

In this chapter, we will show you how to use accelerometer measurements in conjunction 
with machine learning (ML) to recognize three hand gestures with the Raspberry Pi Pico. 
These recognized gestures will then be used to play/pause, mute/unmute, and change 
YouTube videos on our PC.
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We will start by collecting the accelerometer data to build the gesture recognition dataset. 
In this part, we will learn how to interface with the I2C protocol and use the Edge 
Impulse data forwarder tool. Next, we will focus on the Impulse design, where we will 
build a spectral-features-based fully connected neural network for gesture recognition. 
Finally, we will deploy the model on a Raspberry Pi Pico and implement a Python 
program with PyAutoGUI to build a touchless interface for YouTube video playback.

This chapter aims to help you develop an end-to-end gesture recognition application with 
Edge Impulse and the Raspberry Pi Pico so that you can learn how to use I2C peripheral, 
get acquainted with inertial sensors, write a multithreading program in Arm Mbed OS, 
and discover how to filter out redundant classification results during model inference.

In this chapter, we're going to cover the following recipes:

• Communicating with the MPU-6050 IMU through I2C

• Acquiring accelerometer data

• Building the dataset with the Edge Impulse data forwarder tool

• Designing and training the ML model

• Live classifications with the Edge Impulse data forwarder tool

• Gesture recognition on the Raspberry Pi Pico with Arm Mbed OS

• Building a touchless interface with PyAutoGUI

Technical requirements
To complete all the practical recipes in this chapter, you will need the following:

• A Raspberry Pi Pico

• A micro-USB cable

• 1 x half-size solderless breadboard

• 1 x MPU-6050 IMU

• 4 x jumper wires

• A laptop/PC with either Ubuntu 18.04+ or Windows 10 on x86-64

The source code for this chapter and additional material are available in Chapter06 
(https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/
Chapter06).

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter06
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter06
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Communicating with the MPU-6050 IMU 
through I2C
The dataset is the core part of any ML project because it has implications regarding the 
model's performance. However, recording sensor data is often a challenging task in 
TinyML since it requires low-level interfacing with the hardware.

In this recipe, we will use the MPU-6050 Inertial Measurement Unit (IMU) to  
teach the fundamentals behind a common communication protocol for sensors: the  
Inter-Integrated Circuit (I2C). By the end of this recipe, we will have an Arduino sketch 
to read out the MPU-6050 address.

The following Arduino sketch contains the code that will be referred to in this recipe 

• 01_i2c_imu_addr.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter06/ArduinoSketches/01_i2c_imu_addr.ino.

Getting ready
For this recipe, we need to know what an IMU sensor is and how to retrieve its 
measurements with the I2C communication protocol.

The IMU sensor is an electronic device that's capable of measuring accelerations, 
angular rates, and, in some cases, body orientations through a combination of integrated 
sensors. This device is at the heart of many technologies in various industries, including 
automotive, aerospace, and consumer electronics, to give position and orientation 
estimates. For example, IMU allows the screen of a smartphone to auto-rotate and 
enables augmented reality/virtual reality (AR/VR) use cases.

The following subsection provides more details about the MPU-6050 IMU.

Introducing the MPU-6050 IMU
MPU-6050 (https://invensense.tdk.com/products/motion-tracking/6-
axis/mpu-6050/) is an IMU that combines a three-axis accelerometer and three-axis 
gyroscope sensors to measure accelerations and the angular rate of the body. This device 
has been on the market for several years, and due to its low-cost and high performance, it 
is still a popular choice for DIY electronic projects based on motion sensors.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/01_i2c_imu_addr.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/01_i2c_imu_addr.ino
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
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The MPU-6050 IMU can be found via various distributors, such as Adafruit, Amazon, 
Pimoroni, and PiHut, and it is available in different form factors. In this recipe, we have 
considered the compact breakout board that's offered by Adafruit (https://learn.
adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/overview), 
which can be powered by 3.3V and does not require additional electronic components.

Important Note
Unfortunately, the IMU module comes with unsoldered header strips. 
Therefore, if you are not familiar with soldering, we recommend reading the 
following tutorial:

https://learn.adafruit.com/adafruit-agc-electret-
microphone-amplifier-max9814/assembly

The MPU-6050 IMU can communicate through the I2C serial communication protocol 
with the microcontroller. The following subsection describes some of the main features 
worth mentioning of I2C.

Communicating with I2C
I2C is a communication protocol that's based on two wires, commonly called SCL  
(clock signal) and SDA (data signal).

The protocol has been structured to allow communication between a primary device 
(for example, the microcontroller) and numerous secondary devices (for example, the 
sensors). Each secondary device is identified with a permanent 7-bit address.

Important Note
The I2C protocol refers to the terms master and slave rather than primary and 
secondary devices. In this book, we have decided to rename those terms so that 
the language is more inclusive and to remove unnecessary references to slavery.

https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/overview
https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/overview
https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9814/assembly
https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9814/assembly
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The following diagram shows how the primary and secondary devices are connected:

Figure 6.1 – I2C communication

As we can see, there are only two signals (SCL and SDA), regardless of the number of 
secondary devices. SCL is only produced by the primary device and is used by all I2C 
devices to sample the bits that are transmitted over the data signal. Both the primary and 
secondary devices can transmit data over the SDA bus.

The pull-up resistors (Rpullup) are required because the I2C device can only drive the 
signal to LOW (logic level 0). In our case, the pull-up resistors are not needed because 
they are integrated into the MPU-6050 breakout board.

From a communication protocol perspective, the primary device always starts the 
communication by transmitting as follows:

1. 1 bit at LOW (logical level 0) on SDA (start condition).
2. The 7-bit address of the target secondary device.
3. 1 bit for the read or write intention (R/W flag). Logic level 0 indicates that the 

primary device will send the data over SDA (write mode). Otherwise, logical level 1 
means that the primary device will read the data that's transmitted by the secondary 
device over SDA (read mode).
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The following diagram shows an example of a bit command sequence in the scenario where 
the primary device in Figure 6.1 starts communicating with secondary 0:

Figure 6.2 – Bit command sequence transmitted by the primary device

The secondary device that matches the 7-bit address will then respond with 1 bit at logical 
level 0 (ACK) over the SDA bus.

If the secondary device responds with the ACK, the primary device can either transmit or 
read the data in chunks of 8 bits accordingly with the R/W flag set.

In our context, the microcontroller is the primary device, and it uses the R/W flag to do the 
following:

• Read data from the sensor: The microcontroller requests what it wants to read 
(write mode) before the MPU-6050 IMU transmits the data (read mode).

• Program an internal feature of the IMU: The microcontroller only uses write 
mode to set an operating mode of MPU-6050 (for example, the sampling frequency 
of the sensors).

At this point, you may have a question in mind: what do we read and write with the 
primary device?

The primary device reads and writes specific registers on the secondary device. Therefore, 
the secondary device works like a form of memory where each register has a unique 8-bit 
memory address.

Tip
The register map for MPU-6050 is available at the following link:

https://invensense.tdk.com/wp-content/
uploads/2015/02/MPU-6000-Register-Map1.pdf

https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
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How to do it…
Let's start this recipe by taking a breadboard with 30 rows and 10 columns and mounting 
the Raspberry Pi Pico vertically among the left and right terminal strips. We should place 
the microcontroller platform in the same way as we did in Chapter 2, Prototyping with 
Microcontrollers.

Next, place the accelerometer sensor module at the bottom of the breadboard.  
Ensure that the breadboard's notch is in the middle of the two headers, as shown  
in the following diagram:

Figure 6.3 – MPU-6050 mounted at the bottom of the breadboard

As you can see, the I2C pins are located on the left terminal strips of the  
MPU-6050 module.

The following steps will show you how to connect the accelerometer module with  
the Raspberry Pi Pico and write a basic sketch to read the ID (address) of the  
MPU-6050 device:

1. Take four jumper wires and connect the MPU-6050 IMU to the Raspberry Pi Pico, 
as reported in the following table: 

Figure 6.4 – Connections between the MPU-6050 IMU and the Raspberry Pi Pico
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The following diagram should help you visualize how to do the wiring:

Figure 6.5 – Connections between the MPU-6050 IMU and Raspberry Pi Pico
As we mentioned in the Getting ready section of this recipe, we do not need pull-up 
resistors on SDA and SCL because they have already been integrated into the IMU's 
breakout board.

2. Create a new sketch in the Arduino IDE. Declare and initialize the mbed::I2C 
object with the SDA and SCL pins:

#define I2C_SDA p6

#define I2C_SCL p7

I2C i2c(I2C_SDA, I2C_SCL);
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The initialization of the I2C peripheral only requires the pins that are dedicated to 
the SDA (p6) and SCL (p7) buses.

3. Use a C define to keep the 7-bit address of the MPU-6050 IMU (0x68):

#define MPU6050_ADDR_7BIT 0x68

Next, use a C define to keep the 8-bit address required that's for mbed::I2C. The 
8-bit address can easily be obtained by left-shifting the 7-bit address by one bit:

#define MPU6050_ADDR_8BIT (0x68 << 1) //0xD1

4. Implement a utility function to read the data from an MPU-6050 register:

void read_reg(int addr_i2c, int addr_reg, char *buf, int 
length) {

  char data = addr_reg;

  i2c.write(addr_i2c, &data, 1);

  i2c.read(addr_i2c, buf, length);

  return;

}

As per the I2C protocol, we need to transmit the address of the MPU-6050 IMU 
and then send the address of the register to read. So, we must use the write() 
method of the mbed::I2C class, which needs three input arguments, as follows:

 � The 8-bit address of the secondary device (addr_i2c)

 � A char array containing the registered address (char data = addr_reg)

 � The number of bytes to transmit (1 since we're only sending the registered 
address)

After sending the request to read the data from the register, we can get the data 
that's been transmitted by MPU-6050 with the read() method of the mbed::I2C 
class, which needs the following input arguments:

 � The 8-bit address of the secondary device (addr_i2c)

 � A char array to store the received data (buf)

 � The size of the array (length)

The function will return once the read is complete. 
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5. In the setup() function, initialize the I2C frequency at the maximum speed that's 
supported by MPU-6050 (400 KHz):

void setup() {

  i2c.frequency(400000);

6. In the setup() function, use read_reg() to read the WHO_AM_I register 
(0x75) of the MPU-6050 IMU. Transmit the MPU-6050 found message over the 
serial if the WHO_AM_I register contains the 7-bit device address (0x68):

  #define MPU6050_WHO_AM_I 0x75

  Serial.begin(115600);

  while(!Serial);

  char id;

  read_reg(MPU6050_ADDR_8BIT, MPU6050_WHO_AM_I, &id, 1);

  if(id == MPU6050_ADDR_7BIT) {

    Serial.println("MPU-6050 found");

  } else {

    Serial.println("MPU-6050 not found");

    while(1);

  }

}

Compile and upload the sketch on the Raspberry Pi Pico. Now, you can open the 
serial Monitor from the Editor menu. If the Raspberry Pi Pico can communicate 
with the MPU-6050 device, it will transmit the MPU-6050 found string over serial.

Acquiring accelerometer data
The accelerometer is one of the most common sensors that's incorporated into the IMU. 

In this recipe, we will develop an application to read the accelerometer measurements 
from the MPU-6050 IMU with a frequency of 50 Hz. The measurements will then be 
transmitted over the serial so that they can be acquired with the Edge Impulse data 
forwarder tool in the following recipe.
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The following Arduino sketch contains the code that's referred to in this recipe 

• 02_i2c_imu_read_acc.ino0: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter06/ArduinoSketches/02_i2c_imu_read_acc.ino.

Getting ready
The accelerometer is a sensor that measures accelerations on one, two, or three spatial 
axes, denoted as X, Y, and Z.

In this and the following recipes, we will use the three-axis accelerometer that's 
integrated into the MPU-6050 IMU to measure the accelerations of three orthogonal 
directions.

However, how does the accelerometer work, and how can we take the measurements from 
the sensor?

Let's start by explaining the basic underlying working principle of this sensor. Consider 
the following system, which has a mass attached to a spring:

Figure 6.6 – Mass-spring system

The preceding diagram models the physical principle of an accelerometer working  
on a single spatial dimension (that is, a one-axis accelerometer). 

What happens if we place the accelerometer on the table? 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/02_i2c_imu_read_acc.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/02_i2c_imu_read_acc.ino
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In this case, we will see the mass go down because of the constant gravitational force. 
Therefore, the lower spring on the Z-axis would have a displacement from the rest 
position, as shown in the following diagram:

Figure 6.7 – The mass-spring system under the influence of gravitational force

From physics class, we know that Hooke's law gives the spring force (restoring force):
𝐹𝐹 = 𝑘𝑘 ∙ 𝑑𝑑𝑧𝑧 

Here, F  is the force, k  is the elastic constant, and 𝑑𝑑𝑧𝑧  is the displacement.

From Newton's second law, we also know that the force that's applied on the mass is as 
follows:

𝐹𝐹 = 𝑚𝑚 ∙ 𝑎𝑎 

Here, F  is the force, m  is the mass, and a  is the acceleration.

Under the 𝐹𝐹 = 𝑚𝑚 ∙ 𝑎𝑎 = 𝑘𝑘 ∙ 𝑑𝑑𝑧𝑧  constraint, we can infer that the spring displacement, 𝑑𝑑𝑧𝑧 , is 
proportional to the acceleration.

Hence, when a one-axis accelerometer is placed on the table, it returns ~9.81 m/s2, which 
is the object's acceleration when it's falling under the influence of gravity. The 9.81 m/s2 
acceleration is commonly denoted with the g symbol (9.81 m/s2 = 1 g).

As we can imagine, the spring goes up and down whenever we move the accelerometer 
(even slightly). Therefore, the spring displacement is the physical quantity that's acquired 
by the sensor to measure acceleration.

An accelerometer that's working on two or three spatial dimensions can still be modeled 
with the mass-spring system. For example, a three-axis accelerometer can be modeled with 
three mass-spring systems so that each one returns the acceleration for a different axis.
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Of course, we made some simplifications while explaining the device's functionality. Still, 
the core mechanism that's based on the mass-spring system is designed in silicon through 
the micro-electromechanical systems (MEMS) process technology.

Most accelerometers have a programmable measurement range (or scale) that can vary 
from ±1 g (±9.81 m/s2) to ±250 g (±2,452.5 m/s2). This range is also proportional to the 
sensitivity, which is commonly expressed as the least-significant bit over g (LSB/g) and 
defined as the minimum acceleration to cause a change in the numerical representation. 
Therefore, the higher the sensitivity, the smaller the minimum detectable acceleration.

In the MPU-6050 IMU, we can program the measurement range through the  
ACCEL_CONFIG register (0x1C). The following table reports the corresponding 
sensitivity for each one:

Figure 6.8 – Measurement range versus sensitivity on MPU-6050

As we can see, the smaller the measurement range, the higher the sensitivity. A ±2 g range 
is typically enough for acquiring accelerations due to hand movements.

The measurements that are returned by the MPU-6050 IMU are in 16-bit integer format 
and stored in two 8-bit registers. These two registers' names are marked with the _H and 
_L suffixes to identify the high and low bytes of the 16-bit variable. The following diagram 
shows the names and addresses of each register:

Figure 6.9 – Registers for the accelerometer measurements in the MPU-6050 IMU

As you can see, the registers are placed at consecutive memory addresses, starting with 
ACCEL_XOUT_H at 0x3B. To read all the accelerometer measurements without sending 
the address of each register, we can simply access ACCEL_XOUT_H and read 6 bytes.
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How to do it…
Let's keep working on the sketch from the previous recipe. The following steps will show 
you how to extend the program to read accelerometer data from the MPU-6050 IMU and 
transmit the measurements over the serial:

1. Implement a utility function to write one byte into an MPU-6050 register:

void write_reg(int addr_i2c, int addr_reg, char v) {

  char data[2] = {addr_reg, v};

  i2c.write(addr_i2c, data, 2);

  return;

}

As shown in the preceding code, we use the write() method of the mbed::I2C 
class to transmit the following details:
I. The MPU-6050 address
II. The register address to access
III. The byte to store into the register

The write_reg() function will be required to initialize the MPU-6050 device.
2. Implement a utility function to read the accelerometer data from MPU-6050.  

To do so, create a function called read_accelerometer() with three input 
floating-point arrays:

void read_accelerometer(float *x, float *y, float *z) {

The x, y, and z arrays will contain the sampled accelerations for the three 
orthogonal spatial directions.

3. In the read_accelerometer() function, read the accelerometer measurements 
from the MPU-6050 IMU:

  char data[6];

  #define MPU6050_ACCEL_XOUT_H 0x3B

  read_reg(MPU6050_ADDR_8BIT, MPU6050_ACCEL_XOUT_H, data, 
6);

Next, combine the low and high byte of each measurement to get the 16-bit data 
format representation:

  int16_t ax_i16 = (int16_t)(data[0] << 8 | data[1]);

  int16_t ay_i16 = (int16_t)(data[2] << 8 | data[3]);

  int16_t az_i16 = (int16_t)(data[4] << 8 | data[5]);



Acquiring accelerometer data     215

Once you have these 16-bit values, divide the numbers by the sensitivity that's been 
assigned to the selected measurement range and multiply it by g (9.81 m/s2). Then, 
store the accelerations in the x, y, and z arrays:

  const float sensitivity = 16384.f;

  const float k = (1.f / sensitivity) * 9.81f;

  *x = (float)ax_i16 * k;

  *y = (float)ay_i16 * k;

  *z = (float)az_i16 * k;

  return;

}

The preceding code converts the raw data into an m/s2 numerical value. The 
sensitivity is 16384 because the MPU-6050 IMU will operate in the ±2 g range.

4. In the setup() function, ensure that the MPU-6050 IMU is not in sleep mode: 

#define MPU6050_PWR_MGMT_1 0x6B

#define MPU6050_ACCEL_CONFIG 0x1C

if (id == MPU6050_ADDR_7BIT) {

  Serial.println("MPU6050 found");

  write_reg(MPU6050_ADDR_8BIT, MPU6050_PWR_MGMT_1, 0);

When the IMU is in sleep mode, the sensor does not return any measurements. 
To ensure the MPU-6050 IMU is not in this operating mode, we need to clear the 
sixth bit (bit 6) of the PWR_MGMT_1 register. This can easily be done by clearing the 
PWR_MGMT_1 register directly.

5. In the setup() function, set the accelerometer measurement range of the 
MPU-6050 IMU to ±2 g:

  write_reg(MPU6050_ADDR_8BIT, MPU6050_ACCEL_CONFIG, 0);

} 

6. In the loop() function, sample the accelerometer measurements with a frequency 
of 50 Hz (50 three-axis accelerometer samples per second) and transmit them over 
the serial. Send the data with one line per accelerometer reading and the three-axis 
measurements (ax, ay, and az) comma-separated: 

#define FREQUENCY_HZ  50

#define INTERVAL_MS   (1000 / (FREQUENCY_HZ + 1))

#define INTERVAL_US   INTERVAL_MS * 1000

void loop() {
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  mbed::Timer timer;

  timer.start();

  float ax, ay, az;

  read_accelerometer(&ax, &ay, &az);

  Serial.print(ax);

  Serial.print(",");

  Serial.print(ay);

  Serial.print(",");

  Serial.println(az);

  timer.stop();

  using std::chrono::duration_cast;

  using std::chrono::microseconds;

  auto t0 = timer.elapsed_time();

  auto t_diff = duration_cast<microseconds>(t0);

  uint64_t t_wait_us = INTERVAL_US - t_diff.count();

  int32_t t_wait_ms = (t_wait_us / 1000);

  int32_t t_wait_leftover_us = (t_wait_us % 1000);

  delay(t_wait_ms);

  delayMicroseconds(t_wait_leftover_us);

}

In the preceding code, we did the following:
I. Started the mbed::Timer before reading the accelerometer measurements  

to take the time required to acquire the samples.
II. Read the accelerations with the read_accelerometer() function.
III. Stopped mbed::Timer and retrieved the elapsed time in microseconds (µs).
IV. Calculated how much time the program needs to wait before the next 

accelerometer reading. This step will guarantee the 50 Hz sampling rate.
V. Paused the program.

The program is paused with the delay() function, followed by 
delayMicroseconds(), due to the following reasons:

 � delay() alone would be inaccurate since this timer needs the input argument 
in ms.

 � delayMicroseconds() works up to 16 383 µs, which is insufficient for a 
sampling frequency of 50 Hz (2,000 µs).
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So, we find out how much time to wait in milliseconds by dividing t_wait_us by 
1,000. Then, we calculate the remaining time to wait in microseconds by calculating the 
remainder of the t_wait_us / 1000 division (t_wait_us % 1000).

The format that's used to send the accelerometer data over the serial (one line per reading 
with the three-axis measurements comma-separated) will be necessary to accomplish the 
task presented in the following recipe.

Compile and upload the sketch to the Raspberry Pi Pico. Next, open the serial monitor 
and check whether the microcontroller transmits the accelerometer measurements. If 
so, lay the breadboard flat on the table. The expected acceleration for the Z-axis (third 
number of each row) should be roughly equal to the acceleration due to gravity (9.81 m/s2), 
while the accelerations for the other axes should be approximately close to zero, as shown 
in the following diagram:

Figure 6.10 – Accelerations displayed in the Arduino serial monitor

As you can see, the accelerations could be affected by offset and noise. However, we don't 
need to worry about the accuracy of the measurements because the deep learning model 
will be capable of recognizing our gestures.

Building the dataset with the Edge Impulse 
data forwarder tool
Any ML algorithm needs a dataset, and for us, this means getting data samples from the 
accelerometer.

Recording accelerometer data is not as difficult as it may seem at first glance. This task can 
easily be carried out with Edge Impulse.
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In this recipe, we will use the Edge Impulse data forwarder tool to take the accelerometer 
measurements when we make the following three movements with the breadboard:

Figure 6.11 – Gestures to recognize – circle, cross, and pan

As shown in the preceding diagram, we should ensure that the breadboard is vertical, have 
our Raspberry Pi Pico in front of us, and make the movements that are shown by the arrows.

Getting ready
An adequate dataset for gesture recognition requires at least 50 samples for each output 
class. The three gestures that we've considered for this project are as follows:

• Circle: For moving the board clockwise in a circular motion.

• Cross: For moving the board from the top left to the bottom right and then from the 
right top to the bottom left.

• Pan: For moving the board horizontally to the left, then right, and then left again.

Each gesture should be performed by placing the breadboard vertically and with the 
Raspberry Pi Pico in front of us. Since we will consider training samples with a duration 
of 2.5 seconds, we recommend completing each movement in roughly 2 seconds.

Although we have three output classes to identify, an additional one is required to cope 
with the unknown movements and the case where there are no gestures (for example, the 
breadboard lying flat on the table).

In this recipe, we will use the Edge Impulse data forwarder to build our dataset. This 
tool allows us to quickly acquire the accelerations from any device that's capable of 
transmitting data over the serial and import the sample directly in Edge Impulse.
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The data forwarder will run on your computer, so you will need to have the Edge Impulse 
CLI installed. If you haven't installed the Edge Impulse CLI yet, we recommend following 
the instructions in the official documentation: https://docs.edgeimpulse.com/
docs/cli-installation.

How to do it…
Compile and upload the sketch that we developed in the previous recipe on your 
Raspberry Pi Pico. Ensure the Arduino serial monitor is closed; the serial peripheral on 
your computer can only communicate with one application at a time.

Next, open Edge Impulse and create a new project. Edge Impulse will ask you to write the 
name of the project. In our case, we have named the project gesture_recognition.

Now, follow these steps to build the dataset with the data forwarder tool:

1. Run the edge-impulse-data-forwarder program on your computer with a 
50 Hz frequency and 115600 baud rate:

$ edge-impulse-data-forwarder -- frequency 50 --baud-rate 
115600

The data forwarder will ask you to authenticate on Edge Impulse, select the project 
you are working on, and give your Raspberry Pi Pico a name (for example, you can 
call it pico).

Once you have configured the tool, the program will start parsing the data that's 
being transmitted over the serial. The data forwarder protocol expects one line per 
sensor reading with the three-axis accelerations either comma (,) or tab separated, 
as shown in the following diagram:

Figure 6.12 – Data forwarder protocol
Since our Arduino sketch complies with the protocol we just described, the data 
forwarder will detect the three-axis measurements that are being transmitted over 
the serial and ask you to assign a name. You can call them ax, ay, and az.

https://docs.edgeimpulse.com/docs/cli-installation
https://docs.edgeimpulse.com/docs/cli-installation
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2. Open Edge Impulse and click on the Data acquisition tab from the left-hand  
side menu.

As shown in the following screenshot, use the Record new data area to record  
50 samples for each gesture (circle, cross, and pan):

Figure 6.13 – The Record new data window in Edge Impulse
The Device and Frequency fields should already report the name of the device that's 
connected to the data forwarder (pico), as well as the sampling frequency (50Hz). 

For each gesture, enter the label's name in the Label field (for example, circle for the 
circle gesture) and the duration of the recording in Sample length (ms.).

Although each sample has a duration of 2.5 seconds, you can conveniently acquire 
20 seconds of data where you repeat the same gestures multiple times, as shown in 
the following screenshot:

Figure 6.14 – A single recording with multiple motions of the same type
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However, we recommend waiting 1 or 2 seconds between movements to help Edge 
Impulse recognize the motions in the following step.

3. Split the recording into samples of 2.5 seconds by clicking on ⋮  near the filename 
and then clicking Split sample, as shown in the following screenshot:

Figure 6.15 – The Split sample option in Edge Impulse
Set segment length (ms.) to 2500 (2.5s) in the new window and click Apply. Edge 
Impulse will detect the motions and put a cutting window of 2.5 seconds on each 
one, as shown in the following screenshot:

Figure 6.16 – Sample splits in windows of 2.5 seconds
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If Edge Impulse does not recognize a motion in the recording, you can always add 
the window manually by clicking the Add Segment button and clicking on the area 
you want to cut.

Once all the segments have been selected, click Split to get the individual samples.
4. Use the Record new data area to record 50 random motions for the unknown class. 

To do so, acquire 40 seconds of accelerometer data where you move the breadboard 
randomly and lay it flat on the table.

5. Split the unknown recording into samples of 2.5 seconds by clicking on ⋮  near the 
filename and then Split sample. In the new window, add 50 cutting windows and 
click on Split when you are done.

6. Split the samples between the training and test datasets by clicking on the Perform 
train/test split button in the Danger zone area of the dashboard.

Edge Impulse will ask you twice if you are sure that you want to perform this action. 
This is because the data shuffling operation is irreversible.

The dataset is now ready, with 80% of the samples assigned to the training/validation set 
and 20% to the test set.

Designing and training the ML model
With the dataset in our hands, we can start designing the model.

In this recipe, we will develop the following architecture with Edge Impulse:

Figure 6.17 – Fully connected neural network to train

As you can see, the spectral features are the input for the model, which consists of just two 
fully connected layers.
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Getting ready
In this recipe, we want to explain why the tiny network shown in the preceding diagram 
recognizes gestures from accelerometer data.

When developing deep neural network architectures, we commonly feed the model with 
raw data to leave the network to learn how to extract the features automatically.

This approach proved to be effective and incredibly accurate in various applications, 
such as image classification. However, there are some applications where hand-crafted 
engineering features offer similar accuracy results to deep learning and help reduce 
the architecture's complexity. This is the case for gesture recognition, where we can use 
features from the frequency domain. 

Note
If you are not familiar with frequency domain analysis, we recommend reading 
Chapter 4, Voice Controlling LEDs with Edge Impulse.

The benefits of spectral features will be described in more detail in the following 
subsection.

Using spectral analysis to recognize gestures
Spectral analysis allows us to discover characteristics of the signal that are not visible in 
the time domain. For example, consider the following two signals:

Figure 6.18 – Two signals in the time domain

These two signals are assigned to two different classes: class 0 and class 1.

What features would you use in the time domain to discriminate class 0 from class 1?
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Whatever set of features you may consider, they must be shift-invariant and robust 
to noise to be effective. Although there may be a set of features to distinguish class 0 
from class 1, the solution would be straightforward if we considered the problem in the 
frequency domain, as shown by their power spectrums in the following diagram:

Figure 6.19 – Frequency representations of the class 0 and class 1 signals

As we can see, the two signals have different dominant frequencies, defined as the 
components with the highest magnitude. In other words, the dominant frequencies are the 
components that carry more energy. 

Although signals from an accelerometer are not the same as class 0 and class 1, they still 
have repetitive patterns that make the frequency components suitable for a classification 
problem.

However, the frequency representation also offers another benefit related to the possibility 
of getting a compressed representation of the original signal.

For example, let's consider our dataset samples, which are three-axis accelerations that 
we acquired with a frequency of 50 Hz for 2.5 seconds. Each instance contains 375 data 
points (125 data points per axis). Now, let's apply the Fast Fourier Transform (FFT) 
with 128 output frequencies (FFT length) on each sample. This domain transformation 
produces 384 data points (128 data points per axis). Hence, FFT appears to be reducing 
the amount of data. However, as we saw in the previous example with class 0 and class 
1, not all frequencies bring meaningful information. Therefore, we could just extract the 
frequencies that get the most energy (dominant frequencies) to reduce the amount of data 
and then facilitate signal pattern recognition.

For gesture recognition, we commonly produce spectral features by doing the following:

1. Applying a low-pass filter to the frequency domain to filter out the highest 
frequencies. This step generally makes feature extraction more robust against noise.
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2. Extracting the frequency components with the highest magnitude. Commonly, we 
take the three frequencies with the highest peak.

3. Extracting the power features in the power spectrum. Generally, these features 
are the root mean square (RMS) and the power spectral density (PSD), which 
describe the power that's present in an interval of frequencies.

In our case, we will extract the following features for each accelerometer axis:

• One value for the RMS

• Six values for extracting the frequencies with the highest peak (three values for the 
frequency and three values for the magnitude)

• Four values for the PSD

Therefore, we would only get 33 features, which means a data reduction of over 11 times 
compared to the original signal, which is enough to feed a tiny fully connected neural 
network.

How to do it…
Click on the Create Impulse tab from the left-hand side menu. In the Create Impulse 
section, set Window size to 2500ms and Window increase to 200ms.

As we saw in Chapter 4, Voice Controlling LEDs with Edge Impulse, the Window increase 
parameter is required to run ML inference at regular intervals. This parameter plays a 
crucial role in a continuous data stream since we do not know when the event may start. 
Therefore, the idea is to split the input data stream into fixed windows (or segments) and 
execute the ML inference on each one. Window size is the temporal length of the window, 
while Window increase is the temporal distance between two consecutive segments.

The following steps will show how to design the neural network shown in Figure 6.17:

1. Click the Add a processing block button and look for Spectral Analysis:

Figure 6.20 – The Spectral Analysis processing block
Click the Add button to integrate the processing block into Impulse.
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2. Click the Add a learning block button and add Classification (Keras).

Output features block should report the four output classes we must recognize 
(circle, cross, pan, and unknown), as shown in the following screenshot:

Figure 6.21 – Output classes
Save the Impulse by clicking the Save Impulse button.

3. Click on the Spectral features button from the Impulse design category:

Figure 6.22 – Spectral features button
In the new window, we can play with the parameters that are affecting the feature 
extraction, such as the following:

 � The type of filter to apply to the input signal: We can either select a low-pass 
or high-pass filter and then set the cut-off frequency, the frequency at which 
attenuation occurs due to the filter increasing rapidly. Since we want to filter out 
the contribution of the noise, we should use a low-pass filter.

 � The parameters that are affecting the spectral power features being extracted: 
This includes the FFT length, the number of frequency components with the 
highest peak to extract, and the power edges that are required for the PSD.
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We can keep all the parameters at their default values and click on the Generate 
features button to extract the spectral features from each training sample. Edge 
Impulse will return the Job completed message in the output log when the feature 
extraction process ends.

4. Click on the Neural Network (Keras) button under the Impulse design section 
and add a Dropout layer with a 0.2 ratio between the fully connected layers. Ensure 
that the first fully connected layer has 33 neurons while the other has 10 neurons, as 
shown in the following screenshot:

Figure 6.23 – Neural network architecture
Set the number of training epochs to 100 and click on Start training.

The output console will report the accuracy and loss on the training and validation 
datasets during training after each epoch.

Now, let's evaluate the model's performance on the test dataset. To do so, click the Model 
testing button from the left panel and then click Classify all.
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Edge Impulse will provide this progress in Model testing output and generate the 
confusion matrix once the process is completed:

Figure 6.24 – Model testing results

As you can see, our tiny model, which is made up of just two fully connected layers, 
achieved 88% accuracy!

Live classifications with the Edge Impulse data 
forwarder tool
Model testing is the step we should always take before exporting the final application to the 
target platform. Deploying on microcontrollers is error-prone because the code may contain 
bugs, the integration could be incorrect, or the model could not work reliably in the field. 
Therefore, model testing is necessary to exclude at least ML from the source of failures.

In this recipe, we will learn how to perform live classifications via Edge Impulse using the 
Raspberry Pi Pico.

Getting ready
The most effective way to evaluate the behavior of an ML model is to test the model's 
performance on the target platform.

In our case, we have already got a head start because the dataset was built with the 
Raspberry Pi Pico. Therefore, the accuracy of the test dataset should already give us a 
clear indication of how the model behaves. However, there are cases where the dataset 
may not be built on top of sensor data coming from the target device. When this 
happens, the model that's been deployed on the microcontroller could behave differently 
from what we expect. Usually, the reason for this performance degradation is due to 
sensor specifications. Fundamentally, sensors can be of the same type but have different 
specifications, such as offset, accuracy, range, sensitivity, and so on.
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Thanks to the Edge Impulse data forwarder tool, it is straightforward to discover how the 
model performs on our target platform.

How to do it…
Ensure your Raspberry Pi Pico is still running the program we developed in the Acquiring 
accelerometer data recipe and that the edge-impulse-data-forwarder program is 
running on your computer. Next, click the Live classification tab and check whether the 
device (for example, pico) is being reported in the Device drop-down list, as shown in the 
following screenshot:

Figure 6.25 – The Device dropdown menu in Edge Impulse

If the device is not listed, follow the steps provided in the How to do it… subsection  
of the Acquiring accelerometer data recipe to pair your Raspberry Pi Pico with Edge 
Impulse again.

Now, follow these steps to evaluate the model's performance with the live classification 
tool:

1. In the Live classification window, select Sensor with 3 axes from the Sensor  
drop-down list and set Sample length (ms) to 20000. Keep Frequency at the 
default value (50 Hz).

2. With your Raspberry Pi Pico in front of you, click Start sampling and wait for the 
Sampling… message to appear on the button.

When the recording begins, make any of the three movements that the model can 
recognize (circle, cross, or pan). The sample will be uploaded to Edge Impulse when 
the recording ends.

Edge Impulse will then split the recording into samples of 2.5 seconds and test the  
trained model on each. The classification results will be reported on the same page,  
similar to what we saw in Chapter 4, Voice Controlling LEDs with Edge Impulse.
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Gesture recognition on Raspberry Pi Pico with 
Arm Mbed OS
Now that the model is ready, we can deploy it on the Raspberry Pi Pico.

In this recipe, we will build a continuous gesture recognition application with the help 
of Edge Impulse, Arm Mbed OS, and an algorithm to filter out redundant or spurious 
classification results.

The following Arduino sketch contains the code that will be referred to in this recipe: 

• 06_gesture_recognition.ino: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter06/ArduinoSketches/06_gesture_recognition.ino.

Getting ready
In this recipe, we will make our Raspberry Pi Pico capable of recognizing gestures with 
the help of the library that's generated by Edge Impulse for Arduino IDE. In Chapter 4, 
Voice Controlling LEDs with Edge Impulse, we used a pre-built example to accomplish this. 
However, here, we will implement the entire program from scratch.

Our goal is to develop a continuous gesture recognition application, which means that 
the accelerometer data sampling and ML inference must be performed concurrently. This 
approach guarantees that we capture and process all the pieces of the input data stream so 
that we don't miss any events.

The main ingredients we will need to accomplish our task are as follows:

• Arm Mbed OS for writing a multithreading program

• An algorithm to filter out redundant classification results

Let's start by learning how to perform concurrent tasks easily with the help of real-time 
operating system (RTOS) APIs in Arm Mbed OS.

Creating working threads with RTOS APIs in Arm Mbed OS
Any Arduino sketches that have been developed for the Arduino Nano 33 BLE Sense 
board and Raspberry Pi Pico are built on top of Arm Mbed OS, an open source RTOS  
for Arm Cortex-M microcontrollers. So far, we have only used Mbed APIs for interfacing 
with peripherals such as GPIO and I2C. However, Arm Mbed OS also offers functionalities 
that are typical of a canonical OS, such as managing threads to perform different tasks 
concurrently. 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/06_gesture_recognition.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/06_gesture_recognition.ino


Gesture recognition on Raspberry Pi Pico with Arm Mbed OS     231

Once the thread has been created, we just need to bind the thread to the function that we 
want to run and execute it when we are ready.

Tip
If you are interested in learning more about the functionalities of Arm Mbed 
OS, we recommend reading the official documentation, which can be found 
at the following link: https://os.mbed.com/docs/mbed-os/
v6.15/bare-metal/index.html.

A thread in a microcontroller is a piece of a program that runs independently on a single 
core. Since all the threads run on the same core, the scheduler is responsible for deciding 
on what to execute and for how long. Mbed OS uses a pre-emptive scheduler and uses a 
round-robin priority-based scheduling algorithm (https://en.wikipedia.org/
wiki/Round-robin_scheduling). Therefore, every thread is assigned to a priority 
that's provided by us when we create the thread object through the RTOS API of Mbed 
OS (https://os.mbed.com/docs/mbed-os/v6.15/apis/thread.html). The 
supported priority values can be found at https://os.mbed.com/docs/mbed-os/
v6.15/apis/thread.html.

For this recipe, we will need two threads:

• Sampling thread: The thread that's responsible for acquiring the accelerations from 
the MPU-6050 IMU with a frequency of 50 Hz

• Inference thread: The thread that's responsible for running model inference after 
every 200 ms

However, as we mentioned at the beginning of this Getting ready section, a multithreading 
program is not the only ingredient that's required to build our gesture recognition 
application. A filtering algorithm will also be necessary to filter out redundant and 
spurious predictions.

Filtering out redundant and spurious predictions
Our gesture recognition application employs a sliding window-based approach over a 
continuous data stream to determine whether we have a motion of interest. The idea 
behind this approach is to split the data stream into smaller windows of a fixed size and 
execute the ML inference on each one.. As we already know, ML is a powerful tool for 
gathering robust classification results, especially if we use temporal shifts on the input 
data. Therefore, neighboring windows will have similar and high probability scores, 
leading to multiple and redundant detections. 

 https://os.mbed.com/docs/mbed-os/v6.15/bare-metal/index.html
 https://os.mbed.com/docs/mbed-os/v6.15/bare-metal/index.html
https://en.wikipedia.org/wiki/Round-robin_scheduling
https://en.wikipedia.org/wiki/Round-robin_scheduling
https://os.mbed.com/docs/mbed-os/v6.15/apis/thread.html
https://os.mbed.com/docs/mbed-os/v6.15/apis/thread.html
https://os.mbed.com/docs/mbed-os/v6.15/apis/thread.html
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In this recipe, we will adopt a test and trace filtering algorithm to make our application 
robust against spurious detections. Conceptually, this filtering algorithm only wants to 
consider the ML output class as valid if the last N predictions (for example, the last four) 
reported the following:

• The same output class but it's different from the unknown one.

• The probability score is above a fixed threshold (for example, greater than 0.7).

To visually understand how this algorithm works, look at the following diagram:

Figure 6.26 – Example of a valid ML prediction

In the preceding diagram, each rectangular bar is the predicted class at a given time, 
where the following occurs:

• The symbol represents the predicted output class

• The bar's height is the probability score associated with the predicted class

Therefore, considering N as four and the probability threshold as 0.7, we can consider the 
ML output class as valid only at T=8. The previous four classification results returned 
circle and had probability scores greater than 0.7.
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How to do it…
Click on Deployment from the left-hand side menu and select Arduino Library from the 
Create library options, as shown in the following screenshot:

Figure 6.27 – Edge Impulse deployment section

Then, click on the Build button at the bottom of the page. Save the ZIP file on your 
computer.
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Next, import the library into the Arduino IDE. After that, copy the sketch that we 
developed in the Acquiring accelerometer data recipe in a new sketch. Follow these  
steps to learn how to extend this code to make the Raspberry Pi Pico capable of 
recognizing our three gestures:

1. Include the <edge_impulse_project_name>_inferencing.h header 
file in the sketch. For example, if the Edge Impulse project's name is gesture_
recognition, you should include the following information:

#include <gesture_recognition_inferencing.h>

This header file is the only requirement for using the constants, functions,  
and C macros that have been built by Edge Impulse specifically for our project.

2. Declare two floating-point arrays (buf_sampling and buf_inference) that 
have 375 elements each:

#define INPUT_SIZE EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE

float buf_sampling[INPUT_SIZE] = { 0 };

float buf_inference[INPUT_SIZE];

In the preceding code, we used the Edge Impulse EI_CLASSIFIER_DSP_INPUT_
FRAME_SIZE C macro definition to get the number of input samples that are 
required for 2.5 seconds of accelerometer data (375).

The buf_sampling array will be used by the sampling thread to store the 
accelerometer data, while the buf_inference array will be used by the inference 
thread to feed the input to the model.

3. Declare an RTOS thread with a low priority schedule for running the ML model:

rtos::Thread inference_thread(osPriorityLow);

The inference thread should have a lower priority (osPriorityLow) than the 
sampling thread because it has a longer execution time due to ML inference. 
Therefore, a low priority schedule for the inference thread will guarantee that  
we do not miss any accelerometer data samples.
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4. Create a C++ class to implement the test and trace filtering algorithm. Make the 
filtering parameters (N and probability threshold) and the variables that are needed 
to trace the ML predictions (counter and the last output valid class index) as 
private members:

class TestAndTraceFilter {

private:

  int32_t       _n {0};

  float         _thr {0.0f};

  int32_t       _counter {0};

  int32_t       _last_idx_class {-1};

  const int32_t _num_classes {3};

The algorithm mainly needs two variables to trace the classification results. These 
variables are as follows:

 � _counter: This variable is used to keep track of how many times we had the 
same classification with a probability score above the fixed threshold (_thr).

 � _last_idx_class: This variable is used to find the output class index of the 
last inference.

In this recipe, we will assign -1 to the _last_idx_class variable when the last 
inference returns either unknown or a probability score below the fixed threshold 
(_thr).

5. Declare the invalid output index class (-1) as a public member:

public:

  static constexpr int32_t invalid_idx_class = -1;

6. Implement the TestAndTraceFilter constructor to initialize the filtering 
parameters:

public:

  TestAndTraceFilter(int32_t n, float thr) {

    _thr = thr;

    _n   = n;

  }
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7. In the TestAndTraceFilter class, implement a private method to reset the 
internal variables (_counter and _last_idx_class) that will be used to trace 
the ML predictions:

  void reset() {

    _counter        = 0;

    _last_idx_class = invalid_idx_class;

  }  

8. In the TestAndTraceFilter class, implement a public method to update the 
filtering algorithm with the latest classification result:

  void update(size_t idx_class, float prob) {

    if(idx_class >= _num_classes || prob < _thr) {    

      reset();

    }

    else {

      if(prob > _thr) {

        if(idx_class != _last_idx_class) {

          _last_idx_class = idx_class;

          _counter        = 0;

        }

        _counter += 1;

      }

      else {

        reset();

      }

    }

  }  

The TestAndTraceFilter object works in two states – incremental and  
reset – as shown in the following diagram:
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Figure 6.28 – Test and trace filtering flowchart
As you can see, the incremental state occurs when the most recent classification  
is a valid output class and the probability is greater than the minimum probability 
value. In all the other cases, we enter the reset state, where we set _counter to 0 
and _last_idx_class to -1.

In the incremental state, _counter is incremented by one, and _last_idx_
class keeps the index of the valid output class.
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9. In the TestAndTraceFilter class, implement a public method to return the 
filter's output:

  int32_t output() {

    if(_counter >= _n) {

      int32_t out = _last_idx_class;

      reset();

      return out;

    }

    else {

      return invalid_idx_class;

    }

  }  

As you can see, if _counter is greater than or equal to _n, we return _last_
idx_class and put the test and trace filter function in the reset state.

If _counter is smaller than _n, we return invalid_idx_class.
10. Write a function to run the ML inference (inference_func) in an infinite  

loop (while(1)). This function will be executed by the RTOS thread 
(inference_thread). Before you start this inference, wait for the sampling  
buffer to become full:

void inference_func() {

  delay((EI_CLASSIFIER_INTERVAL_MS * EI_CLASSIFIER_RAW_
SAMPLE_COUNT) + 100);

Next, initialize the test and trace filter object. Set N and probability threshold to 4 
and 0.7f, respectively:

  TestAndTraceFilter filter(4, 0.7f);

After the initialization, run the ML inference in an infinite loop:
  while (1) {

    memcpy(buf_inference, buf_sampling,

           INPUT_SIZE * sizeof(float));

    signal_t signal;

    numpy::signal_from_buffer(buf_inference, INPUT_SIZE, 

                              &signal);

    ei_impulse_result_t result = { 0 };

    run_classifier(&signal, &result, false);
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Before we run the inference, we need to copy the data from buf_sampling to 
buf_inference and initialize the Edge Impulse signal_t object with the  
buf_inference buffer.

11. Get the output class with the highest probability and update the 
TestAndTraceFilter object with the latest classification result:

    size_t ix_max = 0; float  pb_max = 0;

#define NUM_OUTPUT_CLASSES EI_CLASSIFIER_LABEL_COUNT

    for (size_t ix = 0; ix < NUM_OUTPUT_CLASSES; ix++) {

      if(result.classification[ix].value > pb_max) {

        ix_max = ix;

        pb_max = result.classification[ix].value;

      }

    }

    filter.update(ix_max, pb_max);

12. Read the output of the TestAndTraceFilter object. If the output is not -1 
(invalid output), send the label that was assigned to the predicted gesture over  
the serial:

    int32_t out = filter.output();

    if(out != filter.invalid_idx_class) {

      Serial.println(result.classification[out].label);

    }

Next, wait for 200 ms (window increase set in the Edge Impulse project) before 
running the subsequent inference:

    delay(200);

Note
delay() puts the current thread in a waiting state. As a rule of thumb, 
we should always put a thread in a waiting state when it does not perform 
computation for a long time. This approach guarantees that we don't waste 
computational resources and that other threads can run in the meantime.

13. Start the RTOS inference thread (inference_thread) in the setup() function:

inference_thread.start(mbed::callback(&inference_func));
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14. In the loop() function, replace the prints to the serial port with the code that's 
required to store the accelerometer measurements in buf_sampling:

  float ax, ay, az;

  read_accelerometer(&ax, &ay, &az);

  numpy::roll(buf_sampling, INPUT_ SIZE, -3);

  buf_sampling[INPUT_SIZE - 3] = ax;

  buf_sampling[INPUT_SIZE - 2] = ay;

  buf_sampling[INPUT_SIZE - 1] = az;

Since the Arduino loop() function is an RTOS thread with high priority, we don't 
need to create an additional thread to sample the accelerometer measurements. 
Therefore, we can replace the Serial.print functions with the code that's 
required to fill the buf_sampling buffer with the accelerometer data.

The buf_sampling buffer is filled as follows:

 � First, we shift the data in the buf_sampling array by three positions using 
the numpy::roll() function. The numpy::roll() function is provided 
by the Edge Impulse library, and it works similarly to its NumPy counterpart. 
(https://numpy.org/doc/stable/reference/generated/
numpy.roll.html).

 � Then, we store the three-axis accelerometer measurements (ax, ay, and az) in 
the last three positions of buf_sampling.

This approach will ensure that the latest accelerometer measurements are always in 
the last three positions of buf_sampling. By doing this, the inference thread can 
copy this buffer's content into the buf_inference buffer and feed the ML model 
directly without having to perform data reshuffling. 

Compile and upload the sketch on the Raspberry Pi Pico. Now, if you make any of the 
three movements that the ML model can recognize (circle, cross, or pan), you will see the 
recognized gestures in the Arduino serial terminal.

Building a gesture-based interface with 
PyAutoGUI
Now that we can recognize the hand gestures with the Raspberry Pi Pico, we must build  
a touchless interface for YouTube video playback.

https://numpy.org/doc/stable/reference/generated/numpy.roll.html
https://numpy.org/doc/stable/reference/generated/numpy.roll.html
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In this recipe, we will implement a Python script to read the recognized motion that's 
transmitted over the serial and use the PyAutoGUI library to build a gesture-based 
interface to play, pause, mute, unmute, and change YouTube videos.

The following Python script contains the code that's referred to in this recipe: 

• 07_gesture_based_ui.py:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter06/PythonScripts/07_gesture_based_ui.py.

Getting ready
The Python script that we will develop in this recipe will not be implemented in Google 
Colaboratory because that requires accessing the local serial port, keyboard, and monitor. 
Therefore, we will write the program in a local Python development environment.

We only need two libraries to build our gesture-based interface: pySerial and 
PyAutoGUI.

PySerial will be used to grab the predicted gesture that will be transmitted over serial, 
similar to what we saw in Chapter 5, Indoor Scene Classification with TensorFlow Lite for 
Microcontrollers and the Arduino Nano.

The identified movement, in turn, will perform one of the following three YouTube video 
playback actions:

Figure 6.29 – Table reporting the gesture mapping

Since YouTube offers keyboard shortcuts for the preceding actions (https://
support.google.com/youtube/answer/7631406), we will use PyAutoGUI to 
simulate the keyboard keys (keystrokes) that are pressed, as shown in the following table:

Figure 6.30 – Keyboard shortcuts for the YouTube playback actions

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/PythonScripts/07_gesture_based_ui.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/PythonScripts/07_gesture_based_ui.py
https://support.google.com/youtube/answer/7631406
https://support.google.com/youtube/answer/7631406


242     Building a Gesture-Based Interface for YouTube Playback

For example, if the microcontroller returns circle over the serial, we will need to 
simulate the press of the m key.

How to do it…
Ensure you have installed PyAutoGUI in your local Python development environment 
(for example, pip install pyautogui). After that, create a new Python script and 
import the following libraries:

import serial

import pyautogui

Now, follow these steps to build a touchless interface with PyAutoGUI:

1. Initialize pySerial with the port and baud rate that's used by the Raspberry  
Pi Pico::

port = '/dev/ttyACM0'

baudrate = 115600

ser = serial.Serial()

ser.port     = port

ser.baudrate = baudrate

Once initialized, open the serial port and discard the content in the serial input 
buffer:

ser.open()

ser.reset_input_buffer()

2. Create a utility function to return a line from the serial port as a string:

def serial_readline():

  data = ser.readline

  return data.decode("utf-8").strip()

3. Use a while loop to read the serial data line by line:

while True:

  data_str = serial_readline()

For each line, check whether we have a circle, cross, or pan motion.
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If we have a circle motion, press the m key to mute/unmute:
if str(data_str) == "circle":  

  pyautogui.press('m')

If we have a cross motion, press the k key to play/pause:
if str(data_str) == "cross":  

  pyautogui.press('k')

If we have a pan motion, press the Shift + N hotkey to move to the next video:
if str(data_str) == "pan":  

  pyautogui.hotkey('shift', 'n')

4. Start the Python script while ensuring your Raspberry Pi Pico is running the sketch 
that we developed in the previous recipe.

Next, open YouTube from your web browser, play a video, and have your Raspberry Pi 
Pico in front of you. Now, if you make any of the three movements that the ML model can 
recognize (circle, cross, or pan), you will be able to control the YouTube video playback 
with gestures!





7
Running a Tiny 

CIFAR-10 Model on 
a Virtual Platform 

with the Zephyr OS
Prototyping a TinyML application directly on a physical device is really fun because we 
can instantly see our ideas at work in something that looks and feels like the real thing. 
However, before any application comes to life, we need to ensure that the models work as 
expected and, possibly, among different devices. Testing and debugging applications directly 
on microcontroller boards often requires a lot of development time. The main reason for 
this is the necessity to upload a program into a device for every change in code. However, 
virtual platforms can come in handy to make testing more straightforward and faster.

In this chapter, we will build an image classification application with TensorFlow Lite for 
Microcontrollers (TFLu) for an emulated Arm Cortex-M3 microcontroller. We will start 
by installing the Zephyr OS, the primary framework used in this chapter to accomplish 
our task. Next, we will design a tiny quantized CIFAR-10 model with TensorFlow (TF). 
This model will be capable of running on a microcontroller with only 256 KB of program 
memory and 64 KB of RAM. In the end, we will deploy an image classification application 
on an emulated Arm Cortex-M3 microcontroller through Quick Emulator (QEMU).
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The aim of this chapter is to learn how to build and run a TFLu-based application with the 
Zephyr OS on a virtual platform and provide practical advice on the design of an image 
classification model for memory-constrained microcontrollers.

In this chapter, we're going to implement the following recipes:

• Getting started with the Zephyr OS

• Designing and training a tiny CIFAR-10 model

• Evaluating the accuracy of the TFLite model

• Converting a NumPy image to a C-byte array

• Preparing the skeleton of the TFLu project

• Building and running the TFLu application on QEMU

Technical requirements
To complete all the practical recipes of this chapter, we will need the following:

• A laptop/PC with either Ubuntu 18.04+ or later on x86_64

The source code and additional material are available in the Chapter07 file 
(https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/
Chapter07).

Getting started with the Zephyr OS
In this recipe, we will install the Zephyr project, the framework used in this chapter to 
build and run the TFLu application on the emulated Arm Cortex-M3 microcontroller.  
At the end of this recipe, we will check whether everything works as expected by running 
a sample application on the virtual platform considered for our project.

Getting ready
To get started with this first recipe, we need to know what the Zephyr project is about.

Zephyr (https://zephyrproject.org/) is an open source Apache 2.0 project that 
provides a small-footprint Real-Time Operating System (RTOS) for various hardware 
platforms based on multiple architectures, including Arm Cortex-M, Intel x86, ARC,  
Nios II, and RISC-V. The RTOS has been designed for memory-constrained devices  
with security in mind.

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter07
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter07
https://zephyrproject.org/
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Zephyr does not provide just an RTOS, though. It also offers a Software Development 
Kit (SDK) with a collection of ready-to-use examples and tools to build Zephyr-based 
applications for various supported devices, including virtual platforms through QEMU.

QEMU (https://www.qemu.org/) is an open source machine emulator that allows 
us to test programs without using real hardware. The Zephyr SDK supports two QEMU 
Arm Cortex-M-based microcontrollers, which are as follows:

• The BBC micro:bit (https://microbit.org/) with the Arm Cortex-M0 

• Texas Instruments' LM3S6965 (https://www.ti.com/product/LM3S6965) 
with the Arm Cortex-M3

From the preceding two QEMU platforms, we will use the LM3S6965. Our choice fell 
to the Texas Instruments board because it has a bigger RAM capacity than the BBC 
micro:bit. In fact, although the devices have the same program memory size (256 KB), 
LM3S6965 has 64 KB of RAM. Unfortunately, the BBC micro:bit has only 16 KB of RAM, 
not enough for running a CIFAR-10 model.

How to do it…
The Zephyr installation consists of the following steps:

1. Installing Zephyr prerequisites
2. Getting Zephyr source code and related Python dependencies
3. Installing the Zephyr SDK

Important Note
The installation guide reported in this section refers to Zephyr 2.7.0 and the 
Zephyr SDK 0.13.1.

Before getting started, we recommend you have the Python Virtual Environment 
(virtualenv) tool installed to create an isolated Python environment. If you haven't 
installed it yet, open your terminal and use the following pip command:

$ pip install virtualenv

To launch the Python virtual environment, create a new directory (for example, zephyr):

$ mkdir zephyr && cd zephyr

https://www.qemu.org/
https://microbit.org/
https://www.ti.com/product/LM3S6965
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Then, create a virtual environment inside the directory just created:

$ python -m venv env

The preceding command creates the env directory with all the executables and Python 
packages required for the virtual environment.

To use the virtual environment, you just need to activate it with the following command:

$ source env/bin/activate

If the virtual environment is activated, the shell will be prefixed with (env):

(env)$

Tip
You can deactivate the Python virtual environment at any time by typing 
deactivate in the shell.

The following steps will help you prepare the Zephyr environment and run a simple 
application on the virtual Arm Cortex-M3-based microcontroller: 

1. Follow the instructions reported in the Zephyr Getting Started Guide (https://
docs.zephyrproject.org/2.7.0/getting_started/index.html) 
until the Install a Toolchain section. All Zephyr modules will be available in the  
~/zephyrproject directory.

2. Navigate into the Zephyr source code directory and enter the samples/
synchronization folder:

$ cd ~/zephyrproject/zephyr/samples/synchronization

Zephyr provides ready-to-use applications in the samples/ folder to demonstrate 
the usage of RTOS features. Since our goal is to run an application on a virtual 
platform, we consider the synchronization sample because it does not require 
interfacing with external components (for example, LEDs).

3. Build the pre-built synchronization sample for qemu_cortex_m3:

$ west build -b qemu_cortex_m3 .

https://docs.zephyrproject.org/2.7.0/getting_started/index.html
https://docs.zephyrproject.org/2.7.0/getting_started/index.html
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The sample test is compiled with the west command (https://docs.
zephyrproject.org/latest/guides/west/index.html). West is a 
tool developed by Zephyr to manage multiple repositories conveniently with a few 
command lines. However, West is more than a repository manager. In fact, the 
tool can also plug additional functionalities through extensions. Zephyr exploits 
this pluggable mechanism to offer the commands to compile, flash, and debug 
applications (https://docs.zephyrproject.org/latest/guides/
west/build-flash-debug.html).

The west command used to compile the application has the following syntax:
$ west build -b <BOARD> <EXAMPLE-TO-BUILD>

Let's break down the preceding command:

 � <BOARD>: This is the name of the target platform. In our case, it is the QEMU 
Arm Cortex-M3 platform (qemu_cortex_m3).

 � <EXAMPLE-TO-BUILD>: This is the path to the sample test to compile.

Once we have built the application, we can run it on the target device.
4. Run the synchronization example on the LM3S6965 virtual platform:

$ west build -t run

To run the application, we just need to use the west build command, followed 
by the build system target (-t) as a command-line argument. Since we had 
specified the target platform when we built the application, we can simply pass the 
run option to upload and run the program on the device.

If Zephyr is installed correctly, the synchronization sample will run on the virtual 
Arm Cortex-M3 platform and print the following output:

threadA: Hello World from arm!

threadB: Hello World from arm!

threadA: Hello World from arm!

threadB: Hello World from arm!

You can now close QEMU by pressing Ctrl + A.

https://docs.zephyrproject.org/latest/guides/west/index.html
https://docs.zephyrproject.org/latest/guides/west/index.html
https://docs.zephyrproject.org/latest/guides/west/build-flash-debug.html
https://docs.zephyrproject.org/latest/guides/west/build-flash-debug.html
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Designing and training a tiny CIFAR-10 model
The tight memory constraint on LM3S6965 forces us to design a model with extremely 
low memory utilization. In fact, the target microcontroller has four times less memory 
capacity than Arduino Nano.

Despite this challenging constraint, in this recipe, we will be leveraging the following tiny 
model for the CIFAR-10 image classification, capable of running on LM3S6965:

Figure 7.1 – A model tailored for CIFAR-10 dataset image classification

The preceding network will be designed with TF and the Keras API.
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The following Colab file (in the Designing and training a tiny CIFAR-10 model section) 
contains the code referred to in this recipe: 

• prepare_model.ipynb 

(https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter07/ColabNotebooks/prepare_model.ipynb).

Getting ready
The network tailored in this recipe takes inspiration from the success of the MobileNet 
V1 on the ImageNet dataset classification. Our model aims to classify the 10 classes of the 
CIFAR-10 dataset: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

The CIFAR-10 dataset is available at https://www.cs.toronto.edu/~kriz/
cifar.html and consists of 60,000 RGB images with 32 x 32 resolution.

To understand why the proposed model can run successfully on LM3S6965, we want  
to outline the architectural design choices that make this network suitable for our  
target device.

As shown in Figure 7.1, the model has a convolution base, which acts as a feature 
extractor, and a classification head, which takes the learned features to perform the 
classification.

Early layers have large spatial dimensions and low Output Feature Maps (OFMs) to  
learn simple features (for example, simple lines). Deeper layers, instead, have small  
spatial dimensions and a high OFMs to learn complex features (for example, shapes).

The model uses pooling layers to halve the spatial dimensionality of the tensors and 
reduce the risk of overfitting when increasing the OFM. Generally, we want several 
activation maps for deep layers to combine as many complex features as possible. 
Therefore, the idea is to get smaller spatial dimensions to afford more OFMs.

In the following subsection, we will explain the design choice in using Depthwise 
Separable Convolution (DWSC) layers instead of the standard convolution 2D.

Replacing convolution 2D with DWSC
DWSC is the layer that made MobileNet V1 a success on the ImageNet dataset and the 
heart of our proposed convolution-based architecture. This operator took the lead in 
MobileNet V1 to produce an accurate model that can also run on a device with limited 
memory and computational resources.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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As seen in Chapter 5, Indoor Scene Classification with TensorFlow Lite for Microcontrollers 
and the Arduino Nano, and shown in the following figure, DWSC is a depthwise 
convolution followed by a convolution layer with a 1 x 1 kernel size (that is, pointwise 
convolution):

Figure 7.2 – The DWSC

To demonstrate the efficiency of this operator, consider the first DWSC layer in the 
network presented in Figure 7.1. As shown in the following diagram, the input tensor has 
a 32 x 32 x 16 dimension while the output tensor has a 32 x 32 x 24 dimension:

Figure 7.3 – The first DWSC in the CIFAR-10 model

If we replace the DWSC with a regular convolution 2D with a 3 x 3 filter size, we will need 
3,480 trainable parameters, of which 3,456 are weights (3 x 3 x 16 x 24), and 24 are biases. 
The DWSC, instead, just needs 560 trainable parameters, distributed as follows:

• 144 weights and 16 biases for the depthwise convolution layer with a 3 x 3 filter size

• 384 weights and 24 biases for the pointwise convolution

Therefore, in this particular case, the DWSC layer yields roughly six times fewer trainable 
parameters than a regular convolution 2D layer.

The model size reduction is not the only benefit this layer offers. The other advantage in 
using the DWSC is given by the reduction of the arithmetic operations. In fact, although 
both layers are made of several Multiply-Accumulate (MAC) operations, the DWSC 
needs considerably fewer MAC operations than convolution 2D. 
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This aspect is demonstrated by the following two formulas for the calculation of the total 
MAC operations for convolution 2D and the DWSC:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2𝑑𝑑 = 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑊𝑊𝑐𝑐𝑜𝑜𝑜𝑜 ∙ 𝐻𝐻𝑐𝑐𝑜𝑜𝑜𝑜 ∙ 𝑀𝑀𝑐𝑐𝑜𝑜𝑜𝑜 ∙ 𝑀𝑀𝑠𝑠𝑐𝑐 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (𝐹𝐹𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝑀𝑀𝑠𝑠𝑖𝑖) + (𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝑀𝑀𝑠𝑠𝑖𝑖) 

The formula is broken down as follows:

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2𝑑𝑑 : The total MAC operations for convolution 2D

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 : The total MAC operations for the DWSC

• 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  : The filter size

• 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 : The width and height of the output tensor

• 𝐶𝐶𝑖𝑖𝑖𝑖 ∙ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 : The number of input and output feature maps

The calculation of the total MAC for the DWSC has two parts. The first part 
(𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝐶𝐶𝑠𝑠𝑖𝑖)  calculates the MAC operations for depthwise convolution, 
assuming that the input and output tensors have the same feature maps. The second part 
(𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝐶𝐶𝑖𝑖𝑖𝑖)  calculates the MAC operations for the pointwise convolution.

If we use the preceding two formulas for the case reported in Figure 7.3, we will discover 
that convolution 2D needs 3,583,944 operations while DWSC needs only 540,672 
operations. Therefore, there is a computational complexity reduction of over six times 
with DWSC.

Hence, the efficiency of the DWSC layer is double since it decreases the trainable 
parameters and arithmetic operations involved.

Now that we know the benefits of this layer, let's discover how to design a model that can 
run on our target device.

Keeping the model memory requirement under control
Our goal is to produce a model that can fit in 256 KB of program memory and run 
with 64 KB of RAM. The program memory usage can be obtained directly from the 
.tflite model generated. Alternatively, you can check the Total params value 
returned by the Keras summary() method (https://keras.io/api/models/
model/#summary-method) to have an indication of how big the model will be. 
Total params represents the number of trainable parameters, and it is affected mainly 
by the OFM and layers. In our case, the convolution base has five trainable layers with a 
maximum of 192 activation maps. This choice will make our model utilize just 30% of the 
total program memory.

https://keras.io/api/models/model/#summary-method
https://keras.io/api/models/model/#summary-method
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The estimation of the RAM utilization is a bit more complicated and depends upon the 
model architecture. All the non-constant variables, such as the network input, output,  
and intermediate tensors, stay in RAM. However, although the network may need  
several tensors, TFLu has a memory manager capable of efficiently providing portions  
of memory at runtime. For a sequential model such as ours, where each layer has one 
input and one output tensor, a ballpark figure for the RAM utilization is given by the  
sum of the following:

• The memory required for the model input and output tensors

• The two largest intermediate tensors 

In our network, the first DWSC produces the largest intermediate tensor with 24,576 
elements (32 x 32 x 24), as shown in the following figure:

Figure 7.4 – The first DWSC produces the biggest intermediate tensor

As you can see from the preceding diagram, the first DWSC produces a tensor with 24 
OFMs, which we found as a good compromise between accuracy and RAM utilization. 
However, you may consider reducing this further to make the model even smaller and 
more performant.
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How to do it…
Create a new Colab project and follow these steps to design and train a quantized  
CIFAR-10 model with TFLite:

1. Download the CIFAR-10 dataset:

(train_imgs, train_lbls), (test_imgs, test_lbls) = 
datasets.cifar10.load_data()

2. Normalize the pixel values between 0 and 1:

train_imgs = train_imgs / 255.0

test_imgs = test_imgs / 255.0

This step ensures that all data is on the same scale.
3. Define a Python function to implement the DWSC:

def separable_conv(i, ch):

    x = layers.DepthwiseConv2D((3,3), padding="same")(i)

    x = layers.BatchNormalization()(x)

    x = layers.Activation("relu")(x)

    x = layers.Conv2D(ch, (1,1), padding="same")(x)

    x = layers.BatchNormalization()(x)

    return layers.Activation("relu")(x)

The separable_conv() function accepts the following input arguments:

 � i: Input to feed to the depthwise convolution 2D

 � ch: The number of OFMs to produce

The batch normalization layer standardizes the input to a layer and makes the 
model training faster and more stable.

4. Design the convolution base, as described in Figure 7.1:

input = layers.Input((32,32,3))

x = layers.Conv2D(16, (3, 3), padding='same')(input)

x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

x = separable_conv(0, x, 24)

x = layers.MaxPooling2D((2, 2))(x)

x = separable_conv(0, x, 48)

x = layers.MaxPooling2D((2, 2))(x)
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x = separable_conv(0, x, 96)

x = separable_conv(0, x, 192)

x = layers.MaxPooling2D((2, 2))(x)

We use pooling layers to reduce the spatial dimensionality of the feature maps 
through the network. Although we can use DWSC with non-unit strides to 
accomplish a similar sub-sampling task, we preferred pooling layers to keep the 
number of trainable parameters low.

5. Design the classification head:

x = layers.Flatten()(x)

x = layers.Dropout(0.2)(x)

x = layers.Dense(10)(x)

6. Generate the model and print its summary:

model = Model(input, x)

model.summary()

As shown in the following screenshot, the model summary returns roughly 60,000 
parameters:

Figure 7.5 – A CIFAR-10 model summary (trainable parameters)
In the case of 8-bit quantization, 60,000 floating-point parameters correspond to 
60,000 8-bit integer values. Therefore, the weights contribute to the model size 
with 60 KB, well away from the 256 KB maximum target. However, we should not 
consider this number as the model size, since what we deploy on a microcontroller 
is the TFLite file, which also contains the network architecture and the quantization 
parameters.

A ballpark figure for the RAM utilization can be estimated from the tensor  
size of each intermediate tensor in the network. This information can be 
extrapolated from the output of model.summary(). As anticipated in the 
previous Getting ready section, the intermediate tensors of the first DWSC layer 
have the largest number of elements. The following screenshot is taken from the 
output of model.summary() and reports the tensor shapes for these two tensors: 
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Figure 7.6 – A CIFAR-10 model summary (the first DWSC)
As you can see from the DWSC area marked in the preceding screenshot, the 
tensors with the largest number of elements are as follows:

 � The output of act0_dwsc2: (None, 32, 32, 16)

 � The output of conv0_dwsc2: (None, 32, 32, 24)

Therefore, the expected memory utilization for the intermediate tensor should  
be in the order of 41 KB. To this number, we should add the memory for the  
input and output nodes to get a more precise ballpark figure of the RAM usage.  
The input and output tensors need 3,082 bytes, of which 3,072 bytes are for the 
input and 10 bytes are for the output. In total, we expect to use 44 KB of RAM 
during the model inference, which is less than the 64 KB target.

Note
In Figure 7.6, there are three layers with the (None, 32, 32, 16) output  
shape: conv0_dwsc2, bn1_dwsc2, and act1_dwsc2. However, only the 
pointwise convolution layer (conv0_dwsc2) counts for memory utilization 
of the intermediate tensors because batch normalization (bn1_dwsc2) and 
activation (act1_dwsc2) will be fused into the convolution (conv0_dwsc2)  
by the TFLite converter.

7. Compile and train the model with 10 epochs:

model.compile(optimizer='adam',  
loss = tf.keras.losses.SparseCategoricalCrossentropy( 
from_logits=True), metrics=['accuracy'])

model.fit(train_imgs, train_lbls, epochs=10,  
validation_data=(test_imgs, test_lbls))
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After 10 epochs, the model should obtain an accuracy of 73% on the validation 
dataset.

8. Save the TF model as SavedModel:

model.save("cifar10")

Our CIFAR-10 model is now ready for being quantized with the TFLite converter.

Evaluating the accuracy of the TFLite model
The tiny model just trained can classify the 10 classes of CIFAR-10 with an accuracy of 
73%. However, what is the model's accuracy of the quantized variant generated by the 
TFLite converter?

In this recipe, we will quantize the model with the TFLite converter and show how to 
perform this accuracy evaluation on the test dataset with the TFLite Python interpreter. 
After the accuracy evaluation, we will convert the TFLite model to a C-byte array.

The following Colab file (the Evaluating the accuracy of the quantized model section) 
contains the code referred to in this recipe: 

• prepare_model.ipynb:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter07/ColabNotebooks/prepare_model.ipynb.

Getting ready
In this section, we will explain why the accuracy of the TFLite model may differ from the 
trained one.

As we know, the trained model needs to be converted to a more compact and lightweight 
representation before being deployed on a resource-constrained device such as a 
microcontroller.

Quantization is the essential part of this step to make the model small and improve the 
inference performance. However, post-training quantization may change the model 
accuracy because of the arithmetic operations at a lower precision. Therefore, it is crucial 
to check whether the accuracy of the generated .tflite model is within an acceptable 
range before deploying it into the target device.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
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Unfortunately, TFLite does not provide a Python tool for the model accuracy evaluation. 
Hence, we will use the TFLite Python interpreter to accomplish this task. The interpreter 
will allow us to feed the input data to the network and read the classification result. The 
accuracy will be reported as the fraction of samples correctly classified from the test dataset.

How to do it…
Follow these steps to evaluate the accuracy of the quantized CIFAR-10 model on the  
test dataset:

1. Select a few hundred samples from the train dataset to calibrate the quantization:

cifar_ds = tf.data.Dataset.from_tensor_slices(train_
images).batch(1)

def representative_data_gen():

    for i_value in cifar_ds.take(100):

         i_value_f32 = tf.dtypes.cast( 
i_value, tf.float32)

         yield [i_value_f32]

The TFLite converter uses the representative dataset to estimate the 
quantization parameters.

2. Initialize the TFLite converter to perform the 8-bit quantization:

tflite_conv = tf.lite.TFLiteConverter.from_saved_
model("cifar10")

tflite_conv.representative_dataset = tf.lite.
RepresentativeDataset(representative_data_gen)

tflite_conv.optimizations = [tf.lite.Optimize.DEFAULT]

tflite_conv.target_spec.supported_ops = [tf.lite.OpsSet.
TFLITE_BUILTINS_INT8]

tflite_conv.inference_input_type = tf.int8

tflite_conv.inference_output_type = tf.int8

For quantizing the TF model to 8-bit, we import the SavedModel directory 
(cifar10) into the TFLite converter and enforce full integer quantization.

3. Convert the model to the TFLite file format and save it as .tflite:

tfl_model = tfl_conv.convert()

open("cifar10.tflite", "wb").write(tfl_model)
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4. Evaluate the TFLite model size:

print(len(tfl_model))

The expected model size is 81,304 bytes. As you can see, the model can fit in 256 KB 
of program memory.

5. Evaluate the accuracy of the quantized model using the test dataset. To do so, start 
the TFLite interpreter and allocate the tensors:

tfl_inter = tf.lite.Interpreter(model_content=tfl_model)

tfl_inter.allocate_tensors()

Get the quantization parameters of the input and output nodes:
i_details = tfl_inter.get_input_details()[0]

o_details = tfl_inter.get_output_details()[0]

i_quant = i_details["quantization_parameters"]

i_scale      = i_quant['scales'][0]

i_zero_point = i_quant['zero_points'][0]

o_scale      = o_quant['scales'][0]

o_zero_point = o_quant['zero_points'][0]

Initialize a variable to zero (num_correct_samples) to keep track of the correct 
classifications:

num_correct_samples = 0

num_total_samples   = len(list(test_imgs))

Iterate over the test samples:
for i_value, o_value in zip(test_imgs, test_lbls):

    input_data = i_value.reshape((1, 32, 32, 3))

    i_value_f32 = tf.dtypes.cast(input_data, tf.float32)

Quantize each test sample:
    i_value_f32 = i_value_f32 / i_scale + i_zero_point

    i_value_s8 = tf.cast(i_value_f32, dtype=tf.int8)

Initialize the input node with the quantized sample and start the inference:
    tfl_conv.set_tensor(i_details["index"], i_value_s8)

    tfl_conv.invoke()
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Read the classification result and dequantize the output to a floating point:
    o_pred = tfl_conv.get_tensor(o_details["index"])[0]

    o_pred_f32 = (o_pred - o_zero_point) * o_scale

Compare the classification result with the expected output class:
    if np.argmax(o_pred_f32) == o_value:

         num_correct_samples += 1

6. Print the accuracy of the quantized TFLite model:

print("Accuracy:", num_correct_samples/num_total_samples)

After a few minutes, the accuracy result will be printed in the output log. The 
expected accuracy should still be around 73%.

7. Convert the TFLite model to a C-byte array with xxd:

!apt-get update && apt-get -qq install xxd

!xxd -i cifar10.tflite > model.h

You can download the model.h and cifar10.tflite files from Colab's left pane.

Converting a NumPy image to a C-byte array 
Our application will be running on a virtual platform with no access to a camera module. 
Therefore, we need to supply a valid test input image into our application to check 
whether the model works as expected.

In this recipe, we will get an image from the test dataset that must return a correct 
classification for the ship class. The sample will then be converted to an int8_t C array 
and saved as an input.h file.

The following Colab file (refer to the Converting a NumPy image to a C-byte array section) 
contains the code referred to in this recipe: 

• prepare_model.ipynb:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter07/ColabNotebooks/prepare_model.ipynb

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
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Getting ready
To get ready for this recipe, we just need to know how to prepare the C file containing  
the input test image. The structure of this file is quite simple and reported in the  
following figure:

Figure 7.7 – The C header file structure for the input test image

As you can observe from the file structure, we only need an array and two variables to 
describe our input test sample, which are as follows:

• g_test: An int8_t array containing a ship image with the normalized and 
quantized pixel values. The pixels stored in the array (// data) should be comma-
separated integer values.

• g_test_len: An integer variable for the array size. Since the input model is 
an RGB image with a 32 x 32 resolution, we expect an array with 3,072 int8_t 
elements. 

• g_test_ilabel: An integer variable for the class index of the input test image. 
Since we have a ship image, the expected class index is eight.

The input image will be obtained from the test dataset. Therefore, we will need to 
implement a function in Python to convert an image stored in NumPy format to a C array. 

How to do it…
Follow the these steps to generate a C header file containing a ship image from the  
test dataset:

1. Write a function to convert a 1D NumPy array of np.int8 values into a single 
string of comma-separated integer values:

def array_to_str(data):

    NUM_COLS = 12
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    val_string = ''

    for i, val in enumerate(data):

         val_string += str(val)

         if (i + 1) < len(data):

              val_string += ','

         if (i + 1) % NUM_COLS == 0:

              val_string += '\n'

    return val_string

In the preceding code, the NUM_COLS variable limits the number of values on 
a single row. In our case, NUM_COLS is set to 12 so that we can add a newline 
character after every 12 values.

2. Write a function to generate a C header file containing the input test image stored in 
an int8_t array. To do so, you can have a template string with the following fields:

 � The size of the array (size)

 � The values to put in the array (data)

 � The index of the class assigned to the input image (ilabel)

def gen_h_file(size, data, ilabel):

    str_out = f'int8_t g_test[] = '

    str_out += "\n{\n"

    str_out += f'{data}'

    str_out += '};\n'

    str_out += f"const int g_test_len = {size};\n"

    str_out += f"const int g_test_ilabel = {ilabel};\n"

    return str_out

As you can see from the preceding code, the function expects {data} to be a single 
string of comma-separated integer values.

3. Create a pandas DataFrame from the CIFAR-10 test dataset:

imgs = list(zip(test_imgs, test_lbls))

cols = [Image, 'Label']

df = pd.DataFrame(imgs, columns = cols)
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4. Get only ship images from the pandas DataFrame:

cond = df['Label'] == 8

ship_samples = df[cond]

In the preceding code, 8 is the index for the ship class.
5. Iterate over the ship images and run the inference:

c_code = ""

for index, row in ship_samples.iterrows():

    i_value = np.asarray(row['Image'].tolist())

    o_value = np.asarray(row['Label'].tolist())

    o_pred_f32 = classify(i_value, o_value)

6. Check whether the classification returns a ship. If so, convert the input image into  
a C-byte array and exit the loop:

    if np.argmax(o_pred_f32) == o_value:

         i_value_f32 = i_value / i_scale + i_zero_point

         i_value_s8  = i_value_f32.astype(dtype=np.uint8)

         i_value_s8  = i_value_s8.ravel()

         # Generate a string from NumPy array

         val_string = array_to_str(i_value_s8)

         # Generate the C header file

         c_code = gen_h_file( 
         i_value_s8.size, val_string, "8")

         break

7. Save the generated code in the input.h file:

with open("input.h", 'w') as file:

    file.write(c_code)

You can download the input.h file containing the input test image from Colab's  
left pane.



Preparing the skeleton of the TFLu project     265

Preparing the skeleton of the TFLu project
Only a few steps are separating us from the completion of this project. Now that we have 
the input test image, we can leave Colab's environment and focus on the application with 
the Zephyr OS.

In this recipe, we will prepare the skeleton of the TFLu project from the pre-built TFLu 
hello_world sample available in the Zephyr SDK.

The following C files contain the code referred to in this recipe: 

• main.c, main_functions.cc, and main_functions.h:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter07/ZephyrProject/Skeleton

Getting ready
This section aims to provide the basis for starting a new TFLu project with the Zephyr OS 
from scratch.

The easiest way to create a project is to copy and edit one of the pre-built samples for 
TFLu. The samples are available in the ~/zephyrproject/zephyr/samples/
modules/tflite-micro folder. At the time of writing, there are two ready-to-use 
examples:

• hello_world: A sample showing the basics of TFLu to replicate a sine function: 
https://docs.zephyrproject.org/latest/samples/modules/
tflite-micro/hello_world/README.html

• magic_wand: A sample showing how to implement a TFLu application to 
recognize gestures with accelerometer data: https://docs.zephyrproject.
org/latest/samples/modules/tflite-micro/hello_world/
README.html

In this recipe, we will base our application on the hello_world application, and the 
following screenshot shows what you should find in the sample directory:

Figure 7.8 – The contents of the hello_world sample folder

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ZephyrProject/Skeleton
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ZephyrProject/Skeleton
https://docs.zephyrproject.org/latest/samples/modules/tflite-micro/hello_world/README.html
https://docs.zephyrproject.org/latest/samples/modules/tflite-micro/hello_world/README.html
https://docs.zephyrproject.org/latest/samples/modules/tflite-micro/hello_world/README.html
https://docs.zephyrproject.org/latest/samples/modules/tflite-micro/hello_world/README.html
https://docs.zephyrproject.org/latest/samples/modules/tflite-micro/hello_world/README.html
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The hello_world folder contains three subfolders, but only src/ is of interest to us 
because it contains the source code for the application. However, not all the files in src/ 
are essential for our project. For example, assert.cc, constants.h, constants.c, 
model.cc, model.h, output_handler.cc, and output_handler.h are only 
required for the sine wave sample application. Therefore, the only C files needed for a new 
TFLu project are as follows:

• main.c: This file contains the standard C/C++ main() function, responsible for 
starting and terminating the program execution. The main() function consists 
of a setup() function called once and a loop() function executed 50 times. 
Therefore, the main function replicates more or less the behavior of an Arduino 
program.

• main_functions.h and main_functions.cc: These files contain the 
declaration and definition of the setup() and loop() functions.

In the end, the CMakeList.txt and prj.conf files in the hello_world directory 
are required for building the application. We will learn more about these files in the last 
recipe of this chapter. 

How to do it…
Open the terminal and follow these steps to create a new TFLu project:

1. Navigate into the ~/zephyrproject/zephyr/samples/modules/tflite-
micro/ directory and create a new folder named cifar10:

$ cd ~/zephyrproject/zephyr/samples/modules/tflite-micro/

$ mkdir cifar10

2. Copy the content of the hello_world directory to cifar10:

$ cp -r hello_world/* cifar10

3. Navigate into the cifar10 directory and remove the following files from the  
src/ directory:

constants.h, constants.c, model.c, model.h, output_handler.cc, 
output_handler.h, and assert.cc

These files can be removed because they are only required for the sine wave sample 
application, as explained in the Getting ready section of this recipe.
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4. Copy the model.h and input.h files generated in the previous two recipes into 
the cifar10/src folder.

Once you have copied the files, the cifar10/src folder should contain the 
following files:

Figure 7.9 – The contents of the hello_word/src folder
Before continuing, ensure you have the files listed in the previous screenshot.

Now, open your default C editor (for example, Vim) to make some code changes in 
the main.c and main_functions.cc files.

5. Open the main.c file and replace for (int i = 0; i < NUM_LOOPS; 
i++) with while(true). The code in the main.c file should become the 
following:

int main(int argc, char *argv[]) {

    setup();

    while(true) {

         loop();

    }

    return 0;

}

This preceding code replicates exactly the behavior of an Arduino sketch, where 
setup() is called once and loop() is repeated indefinitely.

6. Open main_functions.cc and remove the following: 

 � constants.h and output_handler.h from the list of header files.

 � The inference_count variable and all its usages. This variable will not be 
required in our application.

 � The code within the loop() function.

Next, replace g_model with the name of the array in model.h. The g_model 
variable is used when calling tflite::GetModel().

Now that we have the project structure ready, we can finally implement our application.
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Building and running the TFLu application on 
QEMU
The skeleton of our Zephyr project is ready, so we just need to finalize our application to 
classify our input test image.

In this recipe, we will see how to build the TFLu application and run the program on the 
emulated Arm Cortex-M3-based microcontroller.

The following C files contain the code referred to in this recipe: 

• main.c, main_functions.cc, and main_functions.h:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter07/ZephyrProject/CIFAR10

Getting ready
Most of the ingredients required for developing this recipe are related to TFLu and have 
already been discussed in earlier chapters, such as Chapter 3, Building a Weather Station 
with TensorFlow Lite for Microcontrollers, or Chapter 5, Indoor Scene Classification with 
TensorFlow Lite for Microcontrollers and the Arduino Nano. However, there is one small 
detail of TFLu that has a big impact on the program memory usage that we haven't 
discussed yet.

In this section, we will talk about the tflite::MicroMutableOpResolver interface.

As we know from our previous projects, the TFLu interpreter is responsible for preparing 
the computation for a given model. One of the things that the interpreter needs to know 
is the function pointer for each operator to run. So far, we have provided this information 
with tflite::AllOpsResolver. However, tflite::AllOpsResolver is not 
recommended because of the heavy program memory usage. For example, this interface 
will prevent building our application because of the low program memory capacity on 
the target device. Therefore, TFLu offers tflite::MicroMutableOpResolver, an 
alternative and more efficient interface to load only the operators required by the model. 
To know which different operators the model needs, you can visualize the TFLite model 
(.tflite) file with the Netron web application (https://netron.app/).

How to do it…
Let's start this recipe by visualizing the architecture of our TFLite CIFAR-10 model file 
(cifar10.tflite) with Netron.

The following screenshot shows a slice of our model visualized with this tool:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ZephyrProject/CIFAR10
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ZephyrProject/CIFAR10
https://netron.app/
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Figure 7.10 – A visualization of a slice of the CIFAR-10 model in Netron (courtesy of netron.app)

Inspecting the model with Netron, we can see that the model only uses five operators: 
Conv2D, DepthwiseConv2D, MaxPool2D, Reshape, and FullyConnected. This 
information will be used to initialize tflite::MicroMutableOpResolver. 

Now, open your default C editor and open the main_functions.cc file.

Follow these steps to build the TFLu application:

1. Use the #include directives to add the header file of the input test image 
(input.h):

#include "input.h"

2. Increase the arena size (tensor_arena_size) to 52,000:

constexpr int tensor_arena_size = 52000;

Note
The original variable name for the tensor arena is kTensorArenaSize. 
To keep consistency with the lower_case naming convention used in the 
book, we have renamed this variable to tensor_arena_size.
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The TFLu tensor arena is the portion of memory allocated by the user to 
accommodate the network input, output, intermediate tensors, and other data 
structures required by TFLu. The arena size should be a multiple of 16 to have a 
16-byte data alignment.

As we have seen from the design of the CIFAR-10 model, the expected RAM usage 
for the model inference is in the order of 44 KB. Therefore, 52,000 bytes is okay for 
our case because it is greater than 44 KB, a multiple of 16, and less than 64 KB, the 
maximum RAM capacity.

3. Replace uint8_t tensor_arena[tensor_arena_size] with uint8_t 
*tensor_arena = nullptr:

uint8_t *tensor_arena = nullptr;

The tensor arena is too big for being placed in the stack. Therefore, we should 
dynamically allocate this memory in the setup() function.

4. Declare a global tflite::MicroMutableOpResolver object to load only the 
operations needed for running the CIFAR-10 model:

tflite::MicroMutableOpResolver<5> resolver;

This object is created by providing the maximum number of different operations 
that the model requires as a template argument.

5. Declare two global variables for the output quantization parameters:

float o_scale = 0.0f;

int32_t o_zero_point = 0;

6. In the setup() function, remove the instantiation of the 
tflite::AllOpsResolver object. Next, load the operators used by the model 
into the tflite::MicroMutableOpResolver object (resolver) before the 
initialization of the TFLu interpreter:

resolver.AddConv2D();

resolver.AddDepthwiseConv2D();

resolver.AddMaxPool2D();

resolver.AddReshape();

resolver.AddFullyConnected();

static tflite::MicroInterpreter static_interpreter( 
model, resolver, tensor_arena, tensor_arena_size,  
error_reporter);

interpreter = &static_interpreter;
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7. In the setup() function, get the output quantization parameters from the  
output tensor:

const auto* o_quantization = reinterpret_cast<TfLiteAffin
eQuantization*>(output->quantization.params);

o_scale      = o_quantization->scale->data[0];

o_zero_point = o_quantization->zero_point->data[0];

8. In the loop() function, initialize the input tensor with the content of the input  
test image:

  for(int i = 0; i < g_test_len; i++) {

       input->data.int8[i] = g_test[i];

  }

Next, run the inference:
  TfLiteStatus invoke_status = interpreter->Invoke();

9. After the model inference, return the output class with the highest score:

  size_t ix_max = 0;

  float  pb_max = 0;

  for (size_t ix = 0; ix < 10; ix++) {

    int8_t out_val = output->data.int8[ix];

    float  pb = ((float)out_val - o_zero_point) * o_
scale;

    if(pb > pb_max) {

         ix_max = ix;

         pb_max = pb;

    }

} 

The preceding code iterates over the quantized output values and returns the class 
(ix_max) with the highest score.

10. In the end, check whether the classification result (ix_max) is equal to the label 
index assigned to the input test image (g_test_label):

if(ix_max == g_test_ilabel) {
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If so, print CORRECT classification! and return the classification result:
    static const char *label[] = {"airplane", 
"automobile", "bird", "cat", "deer", "dog", "frog", 
"horse", "ship", "truck"};

    printf("CORRECT classification! %s\n",  
label[ix_max]);

    while(1);

}

Now, open the terminal, and use the following command to build the project for  
qemu_cortex_m3:

$ cd ~/zephyrproject/zephyr/samples/modules/tflite-micro/
cifar10

$ west build -b qemu_cortex_m3 .

After a few seconds, the west tool should display the following output in the terminal, 
confirming that the program has been successfully compiled:

Figure 7.11 – The memory usage summary

From the summary generated by the west tool, you can see that our CIFAR-10-based 
application uses 52.57% of program memory (FLASH) and 6.92% of RAM (SRAM). 
However, we should not be misled by RAM usage. In fact, the summary does not consider 
the memory that we allocate dynamically. Therefore, to the 4,536 bytes statically allocated 
in RAM, we should add the 52,000 bytes of the tensor arena, which brings us to 88% of 
RAM utilization. 



Join us on Discord!     273

Now that the application is built, we can run it on the virtual platform with the following 
command: 

$ west build -t run 

The west tool will boot the virtual device and return the following output, confirming 
that the model correctly classified the image as a ship:

Figure 7.12 – The expected output after the model inference

As you can see from the preceding screenshot, the virtual device outputs the CORRECT 
classification message, confirming the successful execution of our tiny CIFAR-10 model!

Join us on Discord!
Do not miss out on the opportunity to take your reading experience beyond the pages. 
We have a dedicated channel on the Embedded System Professionals community over 
Discord for you to read the book with other users. 

Join now to share your journey with the book, discuss queries with other users and the 
author, share advice with others wherever you can, and importantly build your projects in 
collaboration with so many other users who have already joined us on the book club. 

See you on the other side!

https://discord.com/invite/UCJTV3A2Qp

https://discord.com/invite/UCJTV3A2Qp
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Toward the Next 

TinyML Generation 
with microNPU

Here, we are at the last stop of our journey into the world of TinyML. Although 
this chapter may look like the end, it is actually the beginning of something new 
and extraordinary for Machine Learning (ML) at the very edge. In our journey, we 
have learned how vital power consumption is for effective and long-lasting TinyML 
applications. However, computing capacity is the key to unlocking new use cases and 
making the "things" around us even more intelligent. For this reason, a new, advanced 
processor has been designed to extend the computational power and energy efficiency  
of ML workloads. This processor is the Micro-Neural Processing Unit (microNPU).

In this final chapter, we will discover how to run a quantized CIFAR-10 model on a 
virtual Arm Ethos-U55 microNPU.

We will start this chapter by learning how this processor works and installing the  
software dependencies to build and run the model on the Arm Corstone-300 Fixed 
Virtual Platform (Corstone-300 FVP). Next, we will use the TVM compiler to convert 
the pretrained TensorFlow Lite (TFLite) model into C/C++ code. In the end, we will 
show how to compile and deploy the code generated by TVM into Corstone-300 FVP  
to perform the inference with the Ethos-U55 microNPU.
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The purpose of this chapter is to get familiar with the Arm Ethos-U55 microNPU, a new 
class of processor for ML workloads on microcontrollers.

Attention
Since some of the tools presented in this chapter are still under heavy 
development, there is the possibility that some instructions and tools may 
change in the future. Therefore, we recommend checking out the software 
library repositories using the Git commit hash reported.

In this chapter, we're going to implement the following recipes:

• Setting up Arm Corstone-300 FVP

• Installing TVM with Arm Ethos-U support

• Installing the Arm toolchain and Ethos-U driver stack

• Generating C code with TVM

• Generating C-byte arrays for input, output, and labels 

• Building and running the model on Arm Ethos-U55

Technical requirements
To complete all the practical recipes of this chapter, we will need the following:

• Laptop/PC with Ubuntu 18.04+ on x86-64

The source code and additional material are available in Chapter08 folder (https://
github.com/PacktPublishing/TinyML-Cookbook/tree/main/
Chapter08).

Setting up Arm Corstone-300 FVP
Arm Ethos-U55 is the first microNPU designed by Arm to extend the ML capabilities 
of Cortex-M-based microcontrollers. Unfortunately, there is no hardware availability 
with this new processor at the time of writing. However, Arm offers a free Fixed Virtual 
Platform (FVP) based on the Arm Corstone-300 system to quickly experiment with ML 
models on this processor without the need for physical devices.

In this recipe, we will give more details on the computational capabilities of the Arm 
Ethos-U55 microNPU and install the Corstone-300 FVP.

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter08
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter08
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter08


Setting up Arm Corstone-300 FVP     277

Getting ready
Let's start this first recipe by introducing Corstone-300 FVP and Ethos-U55 microNPU.

Corstone-300 FVP (https://developer.arm.com/tools-and-software/
open-source-software/arm-platforms-software/arm-ecosystem-fvps) 
is a virtual platform based on an Arm Cortex-M55 CPU and Ethos-U55 microNPU.

Arm Ethos-U55 (https://www.arm.com/products/silicon-ip-cpu/ethos/
ethos-u55) is a processor for ML inference that works alongside a Cortex-M CPU, as 
shown in the following diagram:

Figure 8.1 – Microcontroller with an Arm Cortex-M CPU and Ethos-U55 microNPU

The role of the CPU is to drive the ML workload on the microNPU, which independently 
runs the model inference. Arm Ethos-U55 has been designed to efficiently compute most 
of the elementary operations that we may find in quantized 8-bit/16-bit neural networks, 
such as the Multiply and Accumulate (MAC) at the heart of convolution, fully connected, 
and depthwise convolution layers.

The following table reports some of the operators supported by Arm Ethos-U55:

Figure 8.2 – Table reporting some of the operators supported by the Arm Ethos-U55 microNPU

https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
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From a microcontroller programming perspective, we still need to provide the model as a 
C/C++ program and upload it into the microcontroller. Furthermore, the weights, biases, 
and quantization parameters can still be stored in program memory, while the input and 
output tensors are stored in SRAM, as shown in the following figure:

Figure 8.3 – Weights and biases can still be stored in the program memory

Therefore, nothing changes from what we have seen in the previous chapters regarding 
memory locations for the ML parameters and the input/output tensors. However, what 
differs from the traditional computation on a Cortex-M CPU is how we program the 
model inference on Arm Ethos-U55. When running the model inference on a microNPU, 
the program is a sequence of commands (that is, a command stream) to tell the processor 
the operations to execute and where to read/write data from/to memory.

Once the program has been uploaded into the microcontroller, we can offload the 
computation on the microNPU by specifying the memory location of the command 
stream and the region of SRAM dedicated to the input and output tensors. Next, Arm 
Ethos-U55 runs all commands independently, writing the output in the user-defined data 
memory region and sending an interrupt on completion. The CPU can use the interrupt 
to know when to read the output data.

How to do it…
Open the terminal and create a new folder named project_npu in the home  
directory (~/):

$ cd ~/ && mkdir project_npu



Setting up Arm Corstone-300 FVP     279

Enter the ~/project_npu folder and create three folders named binaries, src,  
and sw_libs:

$ cd ~/project_npu

$ mkdir binaries

$ mkdir src

$ mkdir sw_libs

These three folders will contain the following:

• The binaries to build and run the application on Arm Corstone-300 FVP 
(binaries/)

• The application source code (src/)

• The software library dependencies for our project (sw_libs/)

Now, take the following steps to install Arm Corstone-300 on an Ubuntu/Linux machine:

1. Open the web browser and go to Arm Ecosystem FVPs (https://developer.
arm.com/tools-and-software/open-source-software/
arm-platforms-software/arm-ecosystem-fvps).

2. Click on Corstone-300 Ecosystem FVPs and then click on the Download Linux 
button, as shown in the following screenshot:

Figure 8.4 – Download Linux button for Corstone-300 FVP
Download the .tgz file and extract the FVP_Corstone_SSE-300.sh script.

3. Open Terminal again and make the FVP_Corstone_SSE-300.sh executable:

$ chmod +x FVP_Corstone_SSE-300.sh

https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
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4. Execute the FVP_Corstone_SSE-300.sh script:

$ ./FVP_Corstone_SSE-300.sh

Follow the instructions on Terminal to install the binaries for Corstone-300 FVP 
under the ~/project_npu/binaries folder. To do so, enter ~/project_
npu/binaries/FVP_Corstone_SSE-300 when the Where would you like to 
install to? question is prompted.

5. Update the $PATH environment variable to store the path of the Corstone-300 
binaries. To do so, open the .bashrc file with any text editor (for example, gedit):

$ gedit ~/.bashrc

Then, add the following line at the bottom of the file:
export PATH=~/project_npu/binaries/FVP_Corstone_SSE-300/
models/Linux64_GCC-6.4:$PATH

The preceding line updates the $PATH environment variable with the location of  
the Corstone-300 binaries.

Now, save and close the file.
6. Reload the .bashrc file in Terminal:

$ source ~/.bashrc

Alternatively to using the source command, you can simply close and re-open  
the terminal.

7. Check whether the Corstone-300 binaries are installed by printing the version info 
of FVP_Corstone_SSE_Ethos-U55:

$ FVP_Corstone_SSE_Ethos-U55 --version

If the $PATH environment variable has been updated successfully, the preceding 
command should return the Corstone-300 version in Terminal, as shown in the 
following figure:

Figure 8.5 – Output message displayed after the command
As shown in the previous figure, the command returns the version of the 
Corstone-300 executable. 
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The virtual hardware with Arm Cortex-M55 and Ethos-U55 is now installed and ready  
to be used.

Installing TVM with Arm Ethos-U support
In the previous recipe, we briefly talked about the Ethos-U55 program, a command 
stream used to instruct the operations to execute on the microNPU. However, how is the 
command stream generated? In this chapter, we will be using TVM, a Deep Learning 
(DL) compiler technology that aims to generate C code from an ML model for a specific 
target device.

In this recipe, we will learn what TVM is by preparing the development environment that 
we will use later on in the chapter.

Getting ready
The goal of this recipe is to install the TVM compiler from the source. The installation 
needs the following prerequisites:

• CMake 3.5.0 or later

• C++ compiler with C++14 support (for example, g++ 5 or later)

• LLVM 4.0 or later

• Python 3.7 or Python 3.8

Before getting started, we recommend that you have the Python virtual environment 
(virtualenv) tool installed to create an isolated Python environment. You can refer to 
Chapter 7, Running a Tiny CIFAR-10 Model on a Virtual Platform with the Zephyr OS,  
to learn how to install and activate the virtual environment.

However, before showing how to install TVM straight away, we want to give you an 
overview of the main characteristics of this technology since you may not have prior 
knowledge about this tool and DL compiler stacks.

Learning the motivation behind TVM
TensorFlow Lite for Microcontrollers (TFLu) is the software library that made the 
creation of our DL applications possible in the previous chapters. TFLu takes advantage 
of vendor-specific optimized operator libraries (performance libraries) to execute the 
model on the target device efficiently. For example, TFLu can delegate the computation 
to the CMSIS-NN library, which yields superior performance and low memory usage on 
Arm Cortex-M-based microcontrollers.
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Generally, these performance libraries provide a collection of handwritten operators 
optimized per processor architecture (for example, Arm Cortex-M0 or Cortex-M4) and 
underlying hardware capabilities. With the need to bring DL to a wide range of devices 
and the numerous functions to optimize, the significant engineering effort required to 
develop these libraries becomes clear. Therefore, driven by the necessity to bring efficient 
DL accelerations on various platforms, a research team at the University of Washington 
developed TVM, a compiler stack to generate optimized code from DL models.

Learning how TVM optimizes the model inference
Apache TVM (https://tvm.apache.org/) is a full-fledged open source compiler 
that aims to translate DL models (for example, TFLite models) to optimized code for any 
processor types:

Figure 8.6 – TVM generates optimized code from a pretrained model

The significant benefit of having a compiler stack is getting efficient code automatically for 
new DL accelerators without being an expert on performance optimizations.

As shown in the previous diagram, TVM accepts a pretrained model in various formats 
(for example, TFLite and PyTorch) and performs the code optimizations in two main 
steps, as shown in the following diagram:

https://tvm.apache.org/
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Figure 8.7 – Main optimization stages in TVM

The previous diagram shows that TVM first converts the input model into an internal 
high-level neural network language (relay). Next, the compiler does the first optimization 
step at the model level (graph optimizations). Fusion is the common optimization 
technique applied at the graph level, which aims to join two or more operators together 
to improve computational efficiency. When TVM spots fusion patterns, it transforms 
the model by replacing the original operators with the new fused one, as shown in the 
following example:

Figure 8.8 – Conv2D + ReLU fusion

In the preceding example, fusion aims to create a single operator for Convolution 2D 
(Conv2D) and ReLU activation instead of having two separate ones as in the  
original model.

When fusion happens, generally, the computation time decreases because the code has 
fewer arithmetic instructions and memory transfers from/to main memory.

The second optimization step performed by TVM is at the operator level (operator 
scheduling), which aims to find the most efficient way to execute each operator on the 
target device. This optimization is at the code level and affects the adoption of computing 
strategies such as tiling, unrolling, and vectorization. As we can imagine, the best compute 
method will depend on the target platform.
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Note
What we have just described are just the main points to give you the big picture 
of how this compiler technology works. For more information about TVM 
architecture, please refer to the TVM introduction guide, which provides 
a step-by-step explanation of the model optimizations: https://tvm.
apache.org/docs/tutorial/introduction.html#sphx-
glr-tutorial-introduction-py.

How to do it…
The installation of TVM is made up of three parts:

1. Installing TVM prerequisites
2. Building the TVM C++ library from source
3. Setting up the Python environment

With the following steps, we will explain how to install TVM: 

1. Use the Ubuntu Advanced Packaging Tool (APT) to install the required TVM 
dependencies:

$ sudo apt-get install -y python3 python3-dev python3-
setuptools gcc libtinfo-dev zlib1g-dev build-essential 
cmake libedit-dev libxml2-dev llvm-dev

Verify the Python, CMake, g++, and llvm-config versions:
$ python –version && cmake –version && g++ --version && 
llvm-config –version

Check whether the versions satisfy the minimum required version for TVM, 
reported in the Getting ready section. If not, you can refer to the following links to 
update their versions manually:

 � CMake: https://cmake.org/download/

 � LLVM: https://apt.llvm.org/

 � g++: https://gcc.gnu.org/

 � Python: https://www.python.org/downloads/

2. Enter the ~/project_npu folder and clone the TVM source code from the 
GitHub repository:

$ git clone –recursive https:// github.com/ apache/tvm tvm

https://tvm.apache.org/docs/tutorial/introduction.html#sphx-glr-tutorial-introduction-py
https://tvm.apache.org/docs/tutorial/introduction.html#sphx-glr-tutorial-introduction-py
https://tvm.apache.org/docs/tutorial/introduction.html#sphx-glr-tutorial-introduction-py
https://cmake.org/download/
https://apt.llvm.org/
https://gcc.gnu.org/
https://www.python.org/downloads/
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3. Enter the tvm/ folder and make TVM point to the dbfbd164c3 commit:

$ cd ~/project_npu/tvm 

$ git checkout dbfbd164c3

4. Create a new directory named build inside the tvm/ folder:

$ mkdir build

5. Copy the cmake/config.cmake file to the build/ directory:

$ cp cmake/config.cmake build

6. Edit the build/config.cmake file to enable microTVM, Ethos-U support, and 
LLVM. To do so, you must have set(USE_MICRO ON), set(USE_LLVM ON), 
and set(USE_ETHOSU ON) in build/config.cmake. As we will see later in 
this chapter, microTVM is an extension of TVM for microcontroller platforms.

7. Build the TVM C++ library from the source:

$ cd build

$ cmake ..

$ make -j8

We recommend specifying the -j flag to run the building process simultaneously 
on different jobs. The number of jobs should be set accordingly with the number of 
cores available in the system, for example, 8 for a system with eight cores.

8. Update the $PYTHONPATH environment variable to tell Python where to locate the 
library built in the previous step. To do so, open the .bashrc file with any text 
editor (for example, gedit):

$ gedit ~/.bashrc

9. Add the following line at the bottom of the file:

export PYTHONPATH=~/project_npu/tvm/python:${PYTHONPATH} 

Save and close the file once you have updated the $PATH environment variable.
10. Reload the .bashrc file:

$ source ~/.bashrc

If you had virtualenv activated in the same shell, start the Python virtual 
environment again.
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11. Check whether Python is correctly locating the TVM Python library in the ~/
project_npu/tvm/python directory:

$ python -c "import sys; print(sys.path)"

The preceding code prints the list of directories that the Python interpreter inspects 
to search modules. Since sys.path is initialized from PYTHONPATH, you should 
see the ~/project_npu/tvm/python path from the list of directories printed in 
the console.

12. Install the necessary Python dependencies for TVM:

$ pip3 install --user numpy decorator attrs scipy

13. Check whether TVM is correctly installed:

$ python -c "import tvm; print('HELLO WORLD,')"

The preceding code should print HELLO WORLD in the output terminal.
14. Install the Python dependencies listed in ~/project_npu/tvm/apps/

microtvm/ethosu/requirements.txt:

$ cd ~/project_npu/tvm/apps/microtvm/ethosu

$ pip3 install -r requirements.txt

TVM requires some of the dependencies installed with this step to generate code for 
the Ethos-U55 microNPU.

TVM can now generate C code for Cortex-M CPUs with an Ethos-U microNPU.

Installing the Arm toolchain and Ethos-U 
driver stack
TVM generates C code for the target device provided using the TFLite model as 
input. However, the generated source code needs to be compiled manually to run it on 
Corstone-300 FVP. Furthermore, the Cortex-M55 CPU needs additional software libraries 
to drive the computation on the Ethos-U55 microNPU.

In this recipe, we will install the Arm GCC toolchain to cross-compile the code  
for Arm Cortex-M55 and the remaining software libraries' dependencies required for  
our application.
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Getting ready
In this section, we will give you an overview of the three remaining dependencies for  
our application: the Arm GCC toolchain, the Ethos-U core driver, and the Ethos-U  
core platforms. 

Corstone-300 FVP is a virtual platform based on Arm Cortex-M55 and needs a  
dedicated compiler to build the application for this target device. The compiler 
is commonly called a cross-compiler because the target CPU (for example, Arm 
Cortex-M55) is different from the CPU of the computer building the application  
(for example, x86-64). To cross-compile for Arm Cortex-M55, we need the GNU Arm 
Embedded toolchain (https://developer.arm.com/tools-and-software/
open-source-software/developer-tools/gnu-toolchain/gnu-rm/
downloads/product-release), which offers a free collection of programming 
tools that includes the compiler, linker, debugger, and software libraries. The toolchain is 
available for various Operating Systems (OSs), such as Linux, Windows, and macOS.

The toolchain is not the only thing required, though. The Cortex-M55 CPU needs the 
Arm Ethos-U core driver (https://review.mlplatform.org/plugins/
gitiles/ml/ethos-u/ethos-u-core-driver/) to offload the ML workload on 
Arm Ethos-U55. The Arm Ethos-U core driver offers an interface to execute command 
streams on the Ethos-U microNPU. The driver is OS-agnostic, which means that  
it does not use any OS primitives, such as queues or mutexes. Therefore, it can be  
cross-compiled for any supported Cortex-M CPU and work with any Real-Time 
Operating System (RTOS).

The last remaining library required for our application is the Arm Ethos-U core platform 
(https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/
ethos-u-core-platform/). This project primarily contains demonstrations to 
run ML workloads on Arm Ethos-U platforms, including Corstone-300 FVP. From this 
project, we will use the Makefile to build the application.

How to do it…
Open the terminal and take the following steps to install the GNU Arm Embedded 
toolchain and get the remaining software dependencies for our application:

1. Enter the ~/project_npu/binaries folder and install the GNU Arm 
Embedded toolchain for Linux x86-64. To do so, create a new folder named 
toolchain in the ~/project_npu/binaries directory:

$ cd ~/project_npu/binaries

$ mkdir toolchain

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads/product-release
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads/product-release
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads/product-release
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-core-driver/
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-core-driver/
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-core-platform/
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-core-platform/
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2. Download the GNU Arm Embedded toolchain. You can conveniently use the curl 
tool and uncompress the downloaded file into the toolchain folder:

$ gcc_arm='https://developer.arm.com/-/media/Files/
downloads/gnu-rm/10-2020q4/gcc-arm-none-eabi-10-2020-q4-
major-x86_64-linux.tar.bz2?revision=ca0cbf9c-9de2-491c-
ac48-898b5bbc0443&la=en&hash=68760A8AE66026BCF99F05AC017A
6A50C6FD832A'

$ curl --retry 64 -sSL ${gcc_arm} | \

tar -C toolchain --strip-components=1 -jx

Note
This operation can take some minutes, depending on the internet connection 
speed.

3. Open the .bashrc file with any text editor (for example, gedit):

$ gedit ~/.bashrc

4. Add the following line at the bottom of the file to include the toolchain path to the 
$PATH environment variable:

export PATH=~/project_npu/binaries/toolchain/gcc-arm-
none-eabi-10.3-2021.10/bin:$PATH

After updating the $PATH environment variable, save and close the file. 
5. Reload the .bashrc file:

$ source ~/.bashrc

6. Check whether the GNU Arm Embedded toolchain is installed correctly by printing 
the list of supported CPUs:

$ arm-none-eabi-gcc -mcpu=.

The returned list of supported CPUs should include the Cortex-M55 CPU, as shown 
in the following screenshot:



Installing the Arm toolchain and Ethos-U driver stack     289

Figure 8.9 – The list of supported CPUs should include cortex-m55

7. Enter the ~/project_npu/sw_libs folder and clone the CMSIS library:

$ cd ~/project_npu/sw_libs

$ git clone "https: //github.com/ARM-software/ CMSIS_5.git" 
cmsis

Next, check out the 5.8.0 release:
$ cd cmsis

$ git checkout -f tags/5.8.0

$ cd ..

8. Enter the ~/project_npu/sw_libs folder and clone the Arm Ethos-U  
core driver:

$ cd ~/project_npu/sw_libs

$ git clone "https:// review.mlplatform.org/ml /ethos-u/
ethos-u-core-driver" core_driver

Next, check out the 21.11 release:
$ cd core_driver

$ git checkout tags/21.11

$ cd ..  

9. Clone the Arm Ethos-U core platform:

$ git clone "https: //review.mlplatform. org/ml/ethos-u/
ethos-u-core-platform" core_platform

$ cd core_platform
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Next, check out the 21.11 release:
$ git checkout tags/21.11

$ cd ..  

Now, we are definitely ready to prepare our application and run it on Corstone-300 FVP!

Generating C code with TVM
Compiling the TFLite model to C code is straightforward with TVM. TVM only needs an 
input model, a target device, and a single command line to generate a TAR package with 
the generated C code.

In this recipe, we will show how to convert a pretrained CIFAR-10 model into C code with 
microTVM, an extension of TVM for microcontroller deployment.

The following Bash script contains the commands referred to in this recipe:

• compile_model_microtvm.sh: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter08/BashScripts/compile_model_microtvm.sh

Getting ready
In this section, we will examine how TVM can generate C code and explain what 
microTVM is.

TVM is a DL compiler technology that we can use in Python and in the same 
environment where we build, train, and quantize the model with TFLite. Although TVM 
natively offers a Python API, there is an alternative and more straightforward API that is 
based on a command-line interface: TVMC.

TVMC is a command-line driver that exposes the same features that TVM offers with the 
Python API but with the advantage of reducing the number of lines of code. Only a single 
command line will be required to compile the TFLite model to C code in our specific case.

At this point, you may wonder: where can we find the TVMC tool?

TVMC is part of TVM Python installation, and you will just need to execute python -m 
tvm.driver.tvmc compile <options> in your terminal to compile the TFLite 
model. The options required by the compile command will be presented in the How to 
do it… section.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/BashScripts/compile_model_microtvm.sh
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/BashScripts/compile_model_microtvm.sh
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Tip
To discover more about TVMC, we recommend reading the following 
documentation: https://tvm.apache.org/docs/tutorial/
tvmc_command_line_driver.

Although we have said that we will generate C code from the model, traditionally, TVM 
produces the following output files:

• .so: A C++ library containing the optimized operators to execute the model. The 
TVM C++ runtime will be responsible for loading this library and running the 
inference on the target device.

• .json: A JSON file containing the computation graph and weights.

• .params: A file containing the parameters of the pretrained model.

Unfortunately, the preceding three files are not suitable for microcontroller deployment 
for the following reasons:

• Microcontrollers do not have the Memory Management Unit (MMU), so we 
cannot load dynamic libraries at runtime.

• The weights are stored in an external file (.json), which is not ideal on 
microcontrollers for two reasons: the former is that we may not have an OS that 
provides an API to read external files. The latter is that weights loaded from an 
external file go into SRAM, which is generally smaller than the program memory.

For the preceding reasons, an extension to TVM was proposed to produce a suitable 
output for microcontrollers: microTVM.

Running TVM on microcontrollers with microTVM
microTVM (https://tvm.apache.org/docs/topic/microtvm/index.html) 
is an extension of TVM, which provides an alternative output format that does not require 
an OS and dynamic memory allocation.

Note
Devices without an OS are commonly called bare-metal devices.

The output format we refer to is Model Library Format (MLF), a TAR package containing 
C code. Therefore, the code generated by TVM/microTVM will need to be integrated into 
the application and compiled for the specific target platform.

https://tvm.apache.org/docs/tutorial/tvmc_command_line_driver
https://tvm.apache.org/docs/tutorial/tvmc_command_line_driver
https://tvm.apache.org/docs/topic/microtvm/index.html
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How to do it…
The following steps will show how to convert a pretrained CIFAR-10 quantized model  
into C code with TVM/microTVM:

1. Create a new folder named build/ in the ~/project_npu/src directory:

$ cd ~/project_npu/src

$ mkdir build

2. Download the pretrained CIFAR-10 quantized model from the TinyML-Cookbook 
GitHub repository: https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter08/cifar10_int8.tflite.

Alternatively, you can reuse the CIFAR-10 model you generated in Chapter 7, 
Running a Tiny CIFAR-10 Model on a Virtual Platform with the Zephyr OS.

Save the model in the ~/project_npu/src/ folder.
3. Enter the ~/project_npu/src/ folder and compile the CIFAR-10 model into 

MLF with TVMC:

$ cd ~/project_npu/src/

$ python3 -m tvm.driver.tvmc compile \

--target="ethos-u -accelerator_config=ethos-u55-256, c" \

--target-c-mcpu=cortex-m55 \

--runtime=crt \

--executor=aot \

--executor-aot-interface-api=c \

--executor-aot-unpacked-api=1 \

--pass-config tir.disable_vectorize=1 \

--output-format=mlf \

cifar10_int8.tflite

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/cifar10_int8.tflite
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/cifar10_int8.tflite
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In the preceding code, we pass several arguments to TVMC's compile 
subcommand. Let's unpack the most important ones:

 � --target="ethos-u -accelerator_config=ethos-u55-256, c": 
This option specifies the target processors for the ML inference. In our case, we 
have two target processors: Arm Ethos-U55 and Cortex-M CPU. The primary 
target is the Ethos-U55 microNPU. As we know, the Ethos-U microNPU is a 
processor capable of performing MAC operations very efficiently. When passing 
ethos-u55-256, we tell TVM that the Ethos-U55 compute engine has 256 
MACs. This value is not programmable by the user but fixed in hardware. 
Therefore, Corstone-300 FVP must use the same Ethos-U55 configuration to 
run the application properly. The other processor specified in the –target 
argument is the Cortex-M CPU through the c option. The CPU executes only 
the layers that cannot be offloaded on the microNPU. 

 � --target-c-mcpu=cortex-m55: This option tells the target CPU to 
execute the unsupported layers on the microNPU. 

 � --runtime=crt: This option specifies the runtime type. In this case, we must 
specify the C runtime (crt) since we will run the application on a bare-metal 
platform.

 � --executor=aot: This option instructs microTVM to build the model graph 
Ahead of Time (AoT) rather than at runtime. In other words, it means that 
the application does not need to load the model during the program execution 
because the graph is already generated and known beforehand. This executor 
allows reducing SRAM usage. 

 � --executor-aot-interface-api=c: This option specifies the interface 
type for the AoT executor. We pass the c option because we generate C code.

 � --pass-config tir.disable_vectorize=1: This option tells TVM to 
disable the code vectorization since C has no native vectorized types.

 � --output-format=mlf: This option specifies the output generated by TVM. 
Since we want an MLF output, we must pass mlf.

 � cifar10_int8.tflite: This is the input model to compile to C code.
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After a few seconds, TVM will generate a TAR package file named module.tar 
and print the following output on the console:

Figure 8.10 – TVM output after the code generation
The files and directories printed by TVM on the console are included in the 
module.tar file.

4. Untar the generated module.tar file into the ~/project_npu/src/build 
folder:

$ tar -C build -xvf module.tar

Now, you should have the same files and directories listed by TVM in Figure 8.10 in the 
~/project_npu/src/build directory.

Generating C-byte arrays for input, output, 
and labels
The C code produced by TVM does not include the input and output tensors because they 
need to be allocated explicitly by the user.

In this recipe, we will develop a Python script to generate three C-byte arrays containing 
the input and output tensors and labels required to report the classification result in the 
application. The input tensor will also be filled with a valid image to test the inference on  
a microNPU.
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The following Python script contains the code referred to in this recipe:

• prepare_assets.py: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter08/PythonScripts/prepare_assets.py

Getting ready
To get ready with this recipe, we need to know how to structure the Python script for the 
C-byte array generation.

The Python script should produce a C header file for each C-byte array. The generated files 
must be saved in the ~/project_npu/src/include folder and named as follows: 

• inputs.h: Input tensor

• outputs.h: Output tensor

• labels.h: Labels

Important Note
The C header files must use the preceding filenames because our application 
will be based on a prebuilt example that expects these files.

To create the C-byte array for the input tensor, the script should accept the path to an 
image file as a command-line argument to fill the array with a valid image.

However, we cannot directly add the raw input image. As we know from Chapter 7, 
Running a Tiny CIFAR-10 Model on a Virtual Platform with the Zephyr OS, the CIFAR-10 
model needs an RGB input image with 32x32 resolution with normalized and quantized 
pixel values. Therefore, the image needs to be preprocessed before storing it in the array. 

The generation of the C-byte arrays for the output and labels is easier than the input one 
because of the following: 

• The output array has 10 values of the int8_t type and can be initialized with  
all zeros.

• The labels array has 10 strings reporting the name of each class (airplane, 
automobile, bird, cat, deer, dog, frog, horse, ship, and truck).

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/PythonScripts/prepare_assets.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/PythonScripts/prepare_assets.py
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As we mentioned in the first recipe of this chapter, the Cortex-M CPU needs to inform 
the Ethos-U55 microNPU of the location of the input and output tensors. However, not 
all parts of the memory system are accessible for reading and writing by the microNPU. 
Therefore, we need to pay attention to where we store these arrays. The following table 
gives us an overview of what memory Corstone-300 FVP has and which can be accessed 
by Arm Ethos-U55:

Figure 8.11 – System memory on Corstone-300 FVP

As you can see from the preceding table, Ethos-U55 cannot access Instruction Tightly 
Coupled Memory (ITCM) and Data Tightly Coupled Memory (DTCM), which are the 
program and data memory for the Cortex-M CPU.

If we do not explicitly define the memory storage for the input and output arrays, their 
contents could be placed in ITCM or DTCM. For example, if we initialize the input array 
with fixed values, the compiler may assume that it is constant data storage that can be 
placed in program memory. To ensure that the input and output tensors are in memory 
spaces accessible by the Ethos-U55 microNPU, we need to specify the memory section 
attribute when declaring the arrays. In this project, we will store the input and output 
tensors in DDR.

The following code shows how to place an int8_t array named K in the DDR storage 
with a 16-byte alignment on Corstone-300 FVP:

int8_t K[4] __attribute__((section("ethosu_scratch"), 
aligned(16)));

The name passed into the __attribute__ section specification (ethosu_scratch) 
and the alignment (16) must match what is reported in the Linker script used to compile 
our application. In our case, we will be using the Linker file available at the following link: 
https://github.com/apache/tvm/blob/main/apps/microtvm/ethosu/
corstone300.ld.

https://github.com/apache/tvm/blob/main/apps/microtvm/ethosu/corstone300.ld
https://github.com/apache/tvm/blob/main/apps/microtvm/ethosu/corstone300.ld


Generating C-byte arrays for input, output, and labels     297

How to do it…
Before developing the Python script, let's extract the input quantization parameters 
from the CIFAR-10 model. You can simply use the Netron web application (https://
netron.app/) for this purpose. On Netron, click on the Open Model… button and 
read the quantization parameters displayed for the first layer of the network, as shown in 
the following screenshot:

Figure 8.12 – Netron output for the first layer

The quantization field reports the formula to convert the 8-bit quantized value into a 
floating point, also described in Chapter 3, Building a Weather Station with TensorFlow 
Lite for Microcontrollers. Therefore, the scale parameter is 0.0039215688… while the zero 
point is -128. 

Attention
Pay attention to the zero point value. This parameter is not +128 because the 
8-bit quantization formula subtracts the zero point from the integer 8-bit value.

Now, open your preferred Python editor and create a new file named prepare_
assets.py in the ~/project_npu/src folder.

Open the prepare_assets.py file and take the following steps to generate the C-byte 
arrays for the input, output, and labels:

1. Use two variables to keep the input quantization parameters of the  
CIFAR-10 model:

input_quant_offset = -128

input_quant_scale = 0.003921568859368563

2. Write a function to generate the content of the input and output C header files:

def gen_c_array(name, size, data):

  str_out = "#include <tvmgen_default.h>\n"

https://netron.app/
https://netron.app/
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  str_out += f"const unsigned int {name}_len = {size};\n"

  str_out += f'int8_t {name}[] __attribute__
((section("ethosu_scratch"), aligned(16))) = '

  str_out += "\n{\n"

  str_out += f'{data}'

  str_out += '\n};'

  return str_out

Since the format, type, and data storage are the same for the input and output 
tensors, we can have a template string to replace only the different parts, which are 
as follows:

 � The name of the array (name)

 � The size of the array (size)

 � The values to store in the array (data)

As you can see from the preceding code, the function expects {data} to be a single 
string of integer values that are comma-separated.

3. Write a function to convert a 1D NumPy array of np.int8 values into a single 
string of integer values that are comma-separated:

def array_to_str(data):

  NUM_COLS = 12

  val_string = ''

  for i, val in enumerate(data):

    val_string += str(val)

    if (i + 1) < len(data):

      val_string += ','

    if (i + 1) % NUM_COLS == 0:

      val_string += '\n'

  return val_string

In the preceding code, the NUM_COLS variable limits the number of values on a 
single row. In our case, NUM_COLS is set to 12 to add a new-line character after 
every 12 values.

4. Define the function for generating the input C-byte array:

def gen_input(img_file):

  img_path    = os.path.join(f"{img_file}")

  img_resized = Image.open(img_path).resize((32, 32))
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In the previous code, the gen_input() function takes the path to the image file 
(image_name) as an argument. The image is then loaded and resized to 32x32 
using the Python Pillow library.

5. Convert the resized image into a NumPy array of floating-point values:

  img_data = np.asarray(img_resized).astype("float32")

Next, normalize and quantize the pixel values:
  img_data /= 255.0

  img_data /= input_quant_scale

  img_data += input_quant_offset

6. Cast the quantized image to np.int8 and convert it into a single string of  
integer values:

  input_data = img_data.astype(np.int8)

  input_data = input_data.ravel()

  val_string = array_to_str(input_data)

In the previous code, we used the NumPy ravel() function to return a 
contiguous flatten array since the array_to_str() function only accepts the 
input array as a 1D object.

7. Generate the input C-byte array as a string and save it as the C header file 
(inputs.h) in the include/ folder:

  c_code = gen_c_array("input", input_data.size,  
val_string)

  with open("include/inputs.h", 'w') as file:

    file.write(c_code)

8. Write a function to generate the C header file of the output tensor (outputs.h) in 
the include/ folder:

def gen_output():

  output_data = np.zeros([10], np.int8)

  val_string = array_to_str(output_data)

  c_code = gen_c_array("output", output_data.size,  
val_string)

  with open("include/outputs.h", 'w') as file:

    file.write(c_code)
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9. Write a function to generate the C header file of the labels (labels.h) in the 
include/ folder:

def gen_labels():

  val_string = "char* labels[] = "

  val_string += '{"airplane", "automobile", "bird", '

  val_string += '"cat", "deer", "dog", '

  val_string += '"frog", "horse", "ship", "truck"};'

  with open("include/labels.h", 'w') as file:

    file.write(val_string)

10. Execute the gen_input(), gen_output(), and gen_labels() functions: 

if __name__ == "__main__":

    gen_input(sys.argv[1])

    gen_output()

    gen_labels()

As you can see from the preceding code, we pass the first command-line argument 
to gen_input() to provide the path of the image file supplied by the user.

At this point, the Python script is ready, and we just need to finalize the application to run 
the CIFAR-10 model on the Ethos-U55 microNPU.

Building and running the model on Ethos-U55
Here we are. Just this recipe keeps us from completing this book. All the tools are 
installed, and the TFLite model is converted to C code, so where does that leave us? We 
still need to build an application to recognize images with the CIFAR-10 model. Once the 
application is ready, we need to compile it and run it on Corstone-300 FVP.

Although it seems there is still a lot to do, in this recipe, we will modify a prebuilt sample 
for the Ethos-U microNPU to simplify all the remaining technicalities.

In this recipe, we will show you how to modify the Ethos-U example available in TVM to 
run the CIFAR-10 inference. The application will then be compiled with the Makefile and 
Linker scripts provided in the prebuilt sample and finally executed on Corstone-300 FVP.

The following Bash script contains the commands referred to in this recipe:

• build_and_run.sh: 

https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter08/BashScripts/build_and_run.sh

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/BashScripts/build_and_run.sh
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/BashScripts/build_and_run.sh
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Getting ready
The prebuilt example considered in this recipe is available in the TVM source code within 
the tvm/apps/microtvm/ethosu folder. The sample is a demo to perform a single 
image classification inference with MobileNet V1 on Ethos-U55. Inside the sample folder, 
you'll find the following:

• Application source code in the include/ and src/ subdirectories

• Scripts to build the demo for Corstone-300 FVP (Makefile, arm-none-eabi-
gcc.cmake, and corstone300.ld)

• Python scripts to generate the input, output, and label C header files (convert_
image.py and convert_labels.py)

• Script to run the demo on Corstone-300 FVP (run_demo.sh)

From the preceding files, we just need the application source code and the scripts to build 
the demo.

How to do it…
Open the terminal and take the following steps to build and run the CIFAR-10 inference 
on Ethos-U55:

1. Copy the application source code from the ~/project_npu/tvm/apps/
microtvm/ethosu/ sample folder to the ~/project_npu/src directory:

$ cp -r ~/project_npu/tvm/apps/microtvm/ethosu/include ~/
project_npu/src/

$ cp -r ~/project_npu/tvm/apps/microtvm/ethosu/src ~/
project_npu/src/

2. Copy the build scripts (Makefile, arm-none-eabi-gcc.cmake, and 
corstone300.ld) from the ~/project_npu/tvm/apps/microtvm/
ethosu/ sample folder to the ~/project_npu/src directory:

$ cp -r ~/project_npu/tvm/apps/microtvm/ethosu/Makefile 
~/project_npu/src/

$ cp -r ~/project_npu/tvm/apps/microtvm/ethosu/arm-none-
eabi-gcc.cmake ~/project_npu/src/

$ cp -r ~/project_npu/tvm/apps/microtvm/ethosu/
corstone300.ld ~/project_npu/src/
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3. Download the ship.jpg image from the TinyML-Cookbook GitHub repository: 
https://github.com/PacktPublishing/TinyML-Cookbook/blob/
main/Chapter08/ship.jpg (source: Pixabay). Save the file in the  
~/project_npu/src folder.

4. Show the list of directories and files in the ~/project_npu/src folder:

$ sudo apt-get install tree

$ cd ~/project_npu/src/

$ tree

The expected output in the terminal is shown in the following figure:

Figure 8.13 – Expected output after the tree command
Before continuing with the next step, check whether you have all the files and 
directories listed in the previous figure.

5. Use the prepare_assets.py Python script to generate the C header files for the 
input, output, and labels:

$ cd ~/project_npu/src

$ python3 prepare_assets.py ship.jpg

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/ship.jpg
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/ship.jpg
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In the preceding code, we pass the ship.jpg file as a command-line argument to 
initialize the input tensor with the content of a ship image.

The Python script will save the C header files in the ~/project_npu/src/
include folder.

6. Open the demo.c file in the ~/project_npu/src/src directory and go to line 
46. Replace the .input field's name with the name used by TVM in the tvmgen_
default_inputs struct. The tvmgen_default_inputs struct is declared 
in the ~/project_npu/src/build/codegen/host/include/tvmgen_
default.h file. If you have downloaded the pretrained CIFAR-10 model from the 
TinyML-Cookbook GitHub repository, the name should be serving_default_
input_2_0. Therefore, the demo.c file should have the following edit:

.serving_default_input_2_0 = input;

7. Open the Makefile script in the ~/project_npu/src directory with any text 
editor. Go to line 25 and replace the /opt/arm/ethosu path with ${HOME}/
project_npu/sw_libs:

ETHOSU_PATH=${HOME}/project_npu/sw_libs

The preceding change is required to inform the Makefile script on the location of 
the software libraries installed in the Installing the Arm toolchain and Ethos-U driver 
stack recipe. Next, save and close the file.

8. Build the application using the make command:

$ make

The Makefile script will generate a binary named demo in the ~/project_
npu/src/build folder.

9. Run the demo executable on the Corstone-300 FVP:

$ FVP_Corstone_SSE-300_Ethos-U55 -C cpu0.CFGDTCMSZ=15 \

-C cpu0.CFGITCMSZ=15 -C mps3_board.uart0.out_file=\"-\" \

-C mps3_board.uart0.shutdown_tag=\"EXITTHESIM\" \

-C mps3_board.visualisation.disable-visualisation=1 \

-C mps3_board.telnetterminal0.start_telnet=0 \

-C mps3_board.telnetterminal1.start_telnet=0 \

-C mps3_board.telnetterminal2.start_telnet=0 \

-C mps3_board.telnetterminal5.start_telnet=0 \

-C ethosu.extra_args="--fast" \

-C ethosu.num_macs=256 ./build/demo
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From the previous command, pay attention to the ethosu.num_macs=256 
argument. This option refers to the number of MACs in the compute engine of the 
Ethos-U55 microNPU and must match what is specified in TVM when compiling 
the TFLite model.

Once you have launched the Corstone-300 command, you should see the following 
output in the console:

Figure 8.14 – Expected output after the CIFAR-10 inference

As reported at the bottom of the previous screenshot, the image is correctly classified  
as a ship.

And…that's it! With this last recipe but first application on Arm Ethos-U55, you 
are definitely ready to make even smarter TinyML solutions on Cortex-M-based 
microcontrollers!
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