
Nicholas H. Tollervey

Programming with
MicroPython
EMBEDDED PROGRAMMING WITH MICROCONTROLLERS & PYTHON

Nicholas H. Tollervey

Programming with MicroPython
Embedded Programming with

Microcontrollers and Python

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-97273-1

[LSI]

Programming with MicroPython
by Nicholas H. Tollervey

Copyright © 2018 Nicholas H. Tollervey. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Susan Conant and Jeff Bleiel
Production Editor: Colleen Cole
Copyeditor: Amanda Kersey
Proofreader: Marta Justak

Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2017: First Edition

Revision History for the First Edition
2017-09-25: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491972731 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Programming with MicroPython, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491972731

Table of Contents

Foreword. vii

Preface. ix

1. What Is MicroPython?. 1
Why Micro? 2
Why Python? 4
MicroPython Genesis 9
Dive In! 12

2. PyBoard. 15
The Hardware 17
Developer Setup 18

3. BBC micro:bit. 23
The Hardware 25
Developer Setup 27

4. Adafruit Circuit Playground Express. 33
The Hardware 34
Developer Setup 36

5. ESP8266 / ESP32. 39
The Hardware 41
Developer Setup 42

ESP8266 42
ESP32 45

iii

6. Thinking Embedded. 49
Human Drives 53
Abilities of Enchantment 56
Steps on the Ladder of Enchantment 60

7. Visual Feedback. 63
Blinkenlights 63
NeoPixels (Blinkenlights on Steroids) 67
Text, Images, and Animation 70
PyBoard Colour LCD Display 75

8. Input and Sensing. 81
Buttons and Capacitative Touch 81
Accelerometers, Gestures, and Compasses 89
Sound, Light, and Temperature 91
Sensing with Peripherals 95

9. GPIO. 99
Pins 99
UART 103
SPI 105
I2C 108
Miscellaneous GPIO Techniques and Protocols 110

10. Networking. 113
Circuit Playground Express Infrared 115
The micro:bit Radio 120
ESP8266/32 WiFi 128
MQTT 136

11. Sound and Music. 141
Bleeps and Bloops 141
Music 151
Speech 154

12. Robots. 163
Trundle Bot 163
Racer Bot 169

13. Idiomatic MicroPython. 175
The Zen of MicroPython 177
Memory 177

iv | Table of Contents

Performance 182

14. Next Steps. 185
The Community 185
Going Deeper 186

Index. 189

Table of Contents | v

Foreword

In late 2012, I had an idea to build a tiny, low-powered computing machine that
could run scripts directly on the “bare metal” of the underlying hardware. The aim
was to make it extraordinarily easy for anyone—no matter his or her background nor
technical skill level—to be able to make a digital device that uses 1’s and 0’s to control
the real world. In my particular case, I wanted an easier way to program the little
robots that I was building at the time.

At first I didn’t have any particular scripting language in mind for this device, but
after investigating what would be a good choice for the language, and what people
would like writing in and would find easy to learn, I chose Python.

I was also interested in running a Kickstarter campaign, to see if people liked the idea
and to perhaps begin to build a community around the project. The first Kickstarter
campaign that ran at the end of 2013 really did kick start MicroPython: it raised
funds to build 3,000 pyboards upon which MicroPython would run; it brought nearly
2,000 people into the initial community; and it attracted some very talented program‐
mers who volunteered their time and expertise to contribute to and improve Micro‐
Python.

My background is theoretical physics, so I approach the design and development of
MicroPython from a much more academic and research-oriented point of view, com‐
pared to simply engineering a solution to a problem. I believe this has been part of
the reason for the success of MicroPython. From the outset it was not obvious that
MicroPython would even work, that Python could at all be shrunk down to such a
small size and run on tiny microcontrollers with very little memory. I treated the cre‐
ation of MicroPython like a research project and I used analysis combined with many
coding tricks, ignoring a lot of software development principles, in order to just get it
working.

My general philosophy with MicroPython is to remain minimal yet usable. And the
name embodies this: “micro” makes reference to microcontrollers and embedded sys‐
tems, but also gives the feeling of minimalism. “Python” is the language and is a very

vii

pragmatic and usable language, designed so humans can enjoy programming. On the
one extreme, making everything too minimal hurts (the ultimate minimalism is
nothing!), but on the other extreme, adding masses of usability features leads to over
burden and excessive resource usage. These ideas about balancing minimalism with
pragmatism apply not just to the design and development philosophy of Micro‐
Python but also to the wider computing industry and even beyond.

Since the first Kickstarter MicroPython has seen fantastic growth, and I, along with
many others in the community, have put an immense amount of work into Micro‐
Python, on both the hardware and software fronts. Today MicroPython stays true to
its original goal of making it easy for anyone to digitally control the real world, and is
widening its scope and seeing use by hobbyists and professionals, in education and
research, as well as commercial products. MicroPython has actually formed its own
little industry (soon to be much bigger!), and it’s very humbling to see one’s creation
grow and attract interest from so many diverse people around the world, and for so
many diverse applications.

MicroPython is constantly improving, the community of users is growing every day,
and the future looks very bright indeed. I hope that MicroPython continues to inspire
people, continues to help people learn, and continues to be used to build and control
systems, from coffee makers to space satellites. Digital computing devices need to be
programmed and MicroPython provides an efficient and enjoyable way to do just
that.

Nicholas has been a great proponent of MicroPython since the early days and has
contributed immensely to its development, most notably from the community and
education side, and was key to the development and success of the micro:bit plat‐
form. He knows MicroPython very well, particularly from the point of view of an end
user, and is well qualified to teach you about it.

So dive into it, read and enjoy this fantastic initiation into the world of MicroPython,
and go out and build some amazing digital devices!

— Damien P. George
Creator of MicroPython

July 2017

viii | Foreword

1 For example, you’re comfortable with Python’s syntax, understand how to define and call a function, and
know how to control program flow in your code.

Preface

This is a book about MicroPython.

MicroPython is a reimplementation of Python 3 for microcontrollers and embedded
systems. It’s also a staggering feat of engineering to have a reimplemention of Python
that works under such constrained circumstances. Why is this important? Micro‐
Python empowers people: it brings one of the most beautiful, easy-to-learn, and
expressive programming languages to the world of embedded development.

This book is intended for anyone who wants to learn how MicroPython is used for
embedded development. I expect you to already know Python,1 but I don’t expect you
to be an expert. For example, much of the material found in this book works well in
an educational context; so rather than being a professional programmer, you might
be a teacher or autodidact.

I aim to give you the understanding, pointers, and ideas you need so you feel confi‐
dent when working on your own projects.

Most importantly, I want this book to be both fun and inspiring. After reading it, I
hope you have enough enthusiasm that you dive in, feet first, to making your own
MicroPython-based doohickey, thingamabob, or enchanted object.

This book will provide an overview of the sorts of devices that run MicroPython,
prompt you into thinking about how best to develop and execute embedded projects,
examine how MicroPython uses and interacts with hardware in order to fulfil various
common outcomes and behaviours, and explore idiomatic MicroPython develop‐
ment. It will close with suggestions for next steps.

As with any book, it contains compromises. Some may find it too technical, others
not technical enough. Alternatively, some may feel I spend too much time on certain

ix

subjects and gloss over others. No matter the compromises I’ve had to make, my
intention has been to write something that is easy to read and accessible while provid‐
ing enough context and signposts to resources for further study. My ultimate aim is
simple: to help bring more people to the remarkable technology that is MicroPython.

It’s important to note that MicroPython is a relatively young project. It’s an exciting
time to get involved as a community evolves, tools and infrastructure are created, fea‐
tures are added, and bugs are fixed. Given the sharp uptake in conference talks, work‐
shops, and community meetings, there is a lot of enthusiasm in various communities
for MicroPython and its nascent potential. Python programmers are learning how to
create projects with embedded devices, embedded developers are discovering how
much fun it is to use Python, and educators all over the world see MicroPython as a
compelling platform for teaching children how to code.

Furthermore, since MicroPython is a reimplementation of “regular” Python, it retains
Python’s state as a mature language with an international community of engaged and
active programmers.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

x | Preface

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/ntoll/programming-with-micropython.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming with MicroPython by
Nicholas H. Tollervey (O’Reilly). Copyright 2018 Nicholas H.Tollervey,
978-1-491-97273-1”.

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,

Preface | xi

https://github.com/ntoll/programming-with-micropython
mailto:permissions@oreilly.com
http://oreilly.com/safari

John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/programming-with-micropython.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I want to thank my reviewers who spotted many mistakes, suggested helpful ideas,
and tactfully pointed out ways in which I could improve the text. It’s a privilege to
work with such a talented, smart, and sympathetic group of people. Thank you, Dam‐
ien George, Radomir Dopieralski, Tim Golden, Kushal Das, Peter Inglesby, Michael
Foord, Carlos Pereira Atencio, Roger Tollervey, Naomi Ceder, and Carol Willing.

I also want to thank Scott Shawcroft, Tony DiCola, Limor Fried, and Phillip Torrone,
all of Adafruit Industries. They have demonstrated infinite patience and provided
invaluable help, advice, and support for those aspects of the book relating to Circuit‐
Python and Adafruit’s line of boards capable of running Python. The open and col‐
laborative nature of your amazing work is an inspiration to us all.

xii | Preface

http://www.oreilly.com/safari
http://bit.ly/programming-with-micropython
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Jo Claessens, Howard Baker, and Michael Sparks also deserve thanks as the origina‐
tors of the BBC micro:bit project. All of the MicroPython resources created for the
micro:bit project are the work of an international community of volunteers. Special
mention should be made of Dr. Mark Shannon, who has proven to be an outstanding
contributor to this community (you can blame him for the speech synthesiser, among
other things). Thanks are due to all of you, no matter how small or insignificant you
may believe your contribution to be.

My editor at O’Reilly, Jeff Bleiel, deserves special thanks for his encouragement,
advice, and suggestions. I imagine editing a book written by someone halfway around
the other side of the world is akin to cat herding via weekly video calls. Jeff, you do it
with great aplomb!

Without Damien George, the creator of MicroPython, none of this would be possible.
In an industry where everyone has a brain the size of a planet, Damien is the Jupiter
of our solar system. His extraordinary feat of miniaturization is, quite simply, an
unprecedented achievement. Damien is backed by a growing online community of
volunteers who support, fix, and contribute to MicroPython. Thanks to all of you
who contribute and help with MicroPython. Most importantly of all, Damien is sup‐
ported by Viktoriya and Nate. I want to take this opportunity (and take the liberty of
speaking on behalf of the global MicroPython community) to express our collective
and sincere gratitude for all that you have done and continue to do. Bonzer effort
Damo, Vik, and Nate!

Last (but not least), I want to thank my wife, Mary, and our three children, Penelope,
Sam, and William, for their continued love, support, and leg-pulling. Believe it or not,
they are my muses, and I wouldn’t get anything done without them.

Preface | xiii

1 MicroPython works on many different devices. The four used in this book were chosen because they repre‐
sent the diversity of choice while being exemplars of the different sorts of device that are available. If you have
a different sort of embedded device running MicroPython, the general principles outlined in this book remain
the same, and it should be relatively simple to adapt the code examples.

CHAPTER 1

What Is MicroPython?

MicroPython is a reimplementation of the Python programming language that tar‐
gets microcontrollers and embedded systems.

Microcontrollers are computers shrunk onto a single, very small chip. Embedded sys‐
tems are computers that function within a larger mechanical or electrical system.
Embedded systems often use microcontrollers.

This book introduces, explores, and explains MicroPython through four typical yet
different devices,1 all of which have a microcontroller at their core.

Such devices are very different to other sorts of computer. Most computers contain
lots of parts: memory, storage, and processing are physically separate components
containing various specialist chips. They may also contain additional parts for sound,
graphics, and networking capabilities. Such computers are significantly more power‐
ful than the resource-constrained, microcontroller-based devices used in this book.

This raises two important questions:

• Why use such small, underpowered microcontroller-based devices?
• Why use Python?

Answering these questions illustrates why there is so much excitement surrounding
MicroPython.

1

http://python.org/

2 Such text-based worlds are called MOOs (multiuser object orientation), and many are still available online.
See https://en.wikipedia.org/wiki/MOO.

Why Micro?
Computers are amazing and seemingly magical things.

For example, it is commonplace to make video calls to the other side of the world.
Yet, just 20 years ago, this was the realm of science fiction.

Any sufficiently advanced technology is indistinguishable from magic.
—Arthur C. Clarke, Hazards of Prophecy: The Failure of Imagination

The quote from science-fiction author Arthur C. Clarke suggests advanced technol‐
ogy appears as awe-inspiring magic. He forgot to mention that any sufficiently
advanced technology is boring if it’s everywhere. Familiarity and ubiquity banish any
sense of wonder for all but the most inquisitive.

What do I mean?

I am just old enough to remember a world without computers everywhere. First
encounters with computers felt like magic. For instance, when I was at university in
the 1990s, I spent hours connected to multiuser, text-based virtual worlds2 collaborat‐
ing with people connected to the server from all over the globe. It felt amazing to
work, in real-time, with such a diverse and far-flung group of friends. I was especially
pleased to discover I could chat with my fellow users, albeit in a textual sense. Being
British I always enquired about the weather and found it strangely satisfying to
instantly know conditions in San Francisco, Tel Aviv, or Singapore (usually, better
than the weather in London). Knowing this information and, more importantly,
knowing how to get such information felt like magic.

Depending on your age, you probably experience one of two reactions to my
example:

1. A tingle of nostalgia for those wonderful, exciting, and amazing early days of the
internet.

2. Spare us reminiscences of the good old days; haven’t you heard of social media?

Today, my own children are unsurprised when they video-call their grandparents
from mobile phones. There is no longer a sense of amazement or wonder at such
feats of engineering. Rather, like generations of children before them, they’re more
impressed, intrigued, and entertained by the magic found in stories, legends, and
fairy tales.

Why?

2 | Chapter 1: What Is MicroPython?

https://en.wikipedia.org/wiki/MOO

3 We’ll look at what it means for an object to be “enchanted” in greater detail later in the book, especially with
reference to a framework of ideas suggested by Professor David Rose of the Massachusetts Institute of Tech‐
nology (MIT).

It captures their imagination, whereas the use of everyday objects is humdrum and
unremarkable.

Take the world of J.K. Rowling’s Harry Potter books—a world populated by enchanted
objects, magical forces, and incantations that bestow upon the user the ability to
transform the world around them. Readers are drawn into the world because they
imagine, “Wouldn’t it be amazing if I owned an invisibility cloak, flying broom, or
could cast a spell that allowed me to breathe under water?” There is a sense of wonder
in the magic found in Rowling’s world. The same could be said of Tolkien’s Middle
Earth, ancient Greek legends, any number of super heroes and Force-wielding Jedi in
the Star Wars movies. It’s fun to be immersed in such magical realms—they entertain
by encouraging a sense of wonder while giving imagination the freedom to wander.
It’s an opportunity to ask yourself, “What would I do if I were the magic wielding
hero?”

What has this to do with microcontrollers?

Such computing devices allow programmers to ask a similar question. Imaginations
are set free to roam but, just as in literature and life, there is always a tension between
right and wrong, good and evil, yes or no.

How?

Everyday objects containing small, embedded microcontrollers become programma‐
ble. If they are programmable, they have agency (the state of being in action) and
autonomy (the capability of choosing how to act given certain situations). Rather
than being static, dead objects, they become independent and demonstrate behav‐
iours that bring them to life. Microcontroller-based devices are small enough to be
stuck, sewn, soldered, and screwed in and on to other objects, turning everyday
things into programmable “enchanted” objects.3 Most importantly, anyone with the
right knowledge can “cast a spell” in code to modify the activities and behaviour of
such objects.

Just as in literary worlds, embedded systems appear magical in ways that engage and
inspire. Consequently, our world becomes programmable in a way that is similar to
how make-believe spells control a fictional, magical world. Imagination and a sense
of wonder for computing is, in a sense, restored. We regain the opportunity to ask
ourselves, “What would I do if I could program these devices?” As Seymour Papert
tells us, someone who learns to write code “both acquires a sense of mastery over a
piece of the most modern and powerful technology and establishes an intense contact
with some of the deepest ideas from science, from mathematics, and from the art of

Why Micro? | 3

4 IEEE Spectrum, “The 2016 Top Programming Languages”, posted 26 Jul 2016.

intellectual model building”. There are many examples of people inspired to build
exciting hardware projects programmed with MicroPython. These encompass a
diverse range of applications: robotics, sensing and reporting on the environment,
satellite control, new musical instruments, art installations, counting South Atlantic
krill, and quite a number of games, to name but a few.

Objects containing embedded and potentially networked microcontrollers are
“enchanted” in the same way objects are in fictional, magical worlds—you simply give
them instructions. Just like in magical stories, it is important to understand how such
incantations in code make enchanted embedded objects work for you.

That’s where Python comes into the picture.

Why Python?
Python is an easy-to-learn, widely used, and expressive programming language (see
Figure 1-1). It’s easy to write what you mean in Python with concise and simple code.
Additionally, Python flourishes because it has a well-organised, proactive, diverse,
and welcoming global community.

Figure 1-1. In 2016 Python was ranked the third most popular programming language
in the world by the IEEE. Guido van Rossum (the inventor of Python) correctly points
out the omission of the “Embedded” flag thanks to MicroPython.4

4 | Chapter 1: What Is MicroPython?

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages?utm

There are copious educational resources available for Python developers of all levels
of experience. If you are unfamiliar with Python, you’ll find many free tutorials, cour‐
ses, and meetups online; and, as you grow into Python, its excellent documentation
and the technical support of its community will expand your horizons.

This book will not include a Python tutorial.
There are a huge number of resources for both experienced pro‐
grammers converting to Python and beginner programmers taking
their first steps in code. Many of these resources are available
online for free, and O’Reilly is rightly famous for the quality of its
books and online video tutorials about Python. If you’re a complete
beginner, I highly recommend Jake VanderPlas’s free A Whirlwind
Tour of Python and Allen Downey’s Think Python.
A word of warning: learn Python 3 and avoid Python 2.
Python 2 is an earlier version of the language that’s still widely used
for legacy reasons. It won’t be supported from 2020.
While Python 2 and Python 3 are very similar, and it’s even possi‐
ble to write Python code that works on both versions, Python 3 is
under active development, contains many improvements to Python
2, and includes useful new features that’ll never be available in
Python 2.
MicroPython is a reimplementation of Python 3, and, for the rest
of the book, it is assumed you have a basic level of understanding
of Python 3, its syntax, and idioms.

MicroPython is a full reimplementation of Python 3. Apart from some differences
described in the coming paragraphs, what you know about Python also applies to
MicroPython. The most obvious difference between regular Python and Micro‐
Python is that MicroPython is designed to work under extraordinarily constrained
conditions (such as just 16 kilobytes of RAM on the micro:bit).

MicroPython runs “bare-metal” directly on the hardware: there is no underlying
operating system like Windows, macOS, or Linux. All the operations and services
usually provided by an operating system are handled directly by MicroPython.
MicroPython has complete and direct control of the hardware, so, in effect, Micro‐
Python is the operating system.

Apart from a few exceptions, all of the language features of Python are also in Micro‐
Python. Due to the limited nature of the devices, MicroPython does not come with
the full standard library by default. Rather, depending on the device, it will come with
a subset of the standard library, often reimplemented in an efficient embedded-

Why Python? | 5

http://bit.ly/whirlwind-python
http://bit.ly/whirlwind-python
http://bit.ly/think-python

5 The available modules, including some not in the standard library (such as urequests), can be found at
https://github.com/micropython/micropython-lib.

6 Use of “u” is shorthand for the Greek letter µ (pronounced “mu”), which stands for “micro” (small) in the
metric measurement system.

friendly manner.5 Usually, most of the features of a module will be available, but
aspects that are considered edge-cases or redundant in an embedded context will not
be implemented. All versions of MicroPython come with modules for interacting
with the hardware, GPIO (general-purpose input/output) pins, peripherals, and com‐
ponents connected via such pins.

Since MicroPython is Python 3, you get:

• Python’s style of object orientation (but without metaclasses)
• Data types (like unicode strings, integers, and floating-point numbers) and data

structures (like lists, sets, and dictionaries)
• The highly dynamic nature of Python objects
• Functions as first-class objects
• Exception handling (try, except, finally, and the standard built-in exception

classes)
• Fun features like generator functions (using the yield keyword), generator

expressions, and list comprehensions
• The new async and await keywords in the very latest versions of MicroPython
• A comprehensive number of Python’s built-in functions

Because MicroPython runs on devices with different capabilities, the availability of
features and modules will sometimes be different. Of course, devices with special
capabilities, like WiFi, will include modules to support these features.

For example, the micro:bit comes with a cut-down version of the standard library’s
random module, but the default build for the ESP8266 board has the ultra minimalist
urandom module6 instead. Because of the onboard WiFi capability, the ESP8266 port
comes with both the json and urequests modules, whereas the micro:bit port does
not because the micro:bit has no WiFi. MicroPython on both boards comes with the
universally useful math module.

MicroPython’s comprehensive and flexible re-implementation of Python 3 raises
three interesting opportunities:

1. The wider Python community have the opportunity to try embedded develop‐
ment using their favourite language.

2. Embedded developers who use C and other traditional embedded languages have
the opportunity to take advantage of Python’s ease of use and rich libraries.

6 | Chapter 1: What Is MicroPython?

https://github.com/micropython/micropython-lib

7 REPL stands for “read, evaluate, print, loop”. It’s what you get when you type python from the command line
and see three chevrons (>>>) prompting you do some interactive Python programming.

3. Beginner programmers have the opportunity to start with more than just “Hello,
World!” They’re empowered to create engaging first projects using light, sound,
sensors, and networking.

Do you make Django websites, analyse data with SciPy, or present work with Jupyter
notebooks? Thanks to MicroPython, your Python skills apply in the embedded
world! It is very easy to buy an inexpensive microcontroller-based board, plug in
peripherals such as sensors or motors, and build something fun and useful.

As a Python programmer with no embedded experience, my first steps with Micro‐
Python were rewarding and fun. It’s remarkably satisfying to make an LED blink via
MicroPython’s REPL;7 and, as this book demonstrates, it doesn’t take much more
effort to learn enough to build and invent interesting embedded contraptions.

If you’re an experienced embedded developer, you may be asking, “What’s wrong
with C?” Nothing, and I’m not in the business of provoking unhelpful language wars.
There are times when C is absolutely the right language and developers must use the
best tool for solving the problem at hand.

However, in many situations, MicroPython outperforms C. When prototyping,
MicroPython gives you many useful features that avoid the need for tedious boiler‐
plate code. One C programmer reported a working prototype in MicroPython in just
an afternoon, when it would have previously taken a week in C. Sometimes a few
simple lines of MicroPython are able to do what would require hundreds of lines of
C, making such code easier to maintain.

MicroPython is often fast enough and manages the limited resources well enough that
any speed or memory efficiencies gained by using C are dwarfed by Python’s ease of
use and productivity.

In any case, where C is the right tool, it’s possible to write MicroPython modules in C
and make use of them within your Python code. It’s even possible to write inline
assembler as MicroPython functions.

For some beginner programmers, making a computer print “Hello, World!” on a
screen is a revelation. Alas, to the vast majority of people, the end result is a “so
what?”

Who can blame them?

Compared to the wonders of kitten photos, video conferencing, virtual reality, and
beautifully rendered, multiplayer video games set in an almost infinite galaxy, “Hello,

Why Python? | 7

World!” is a bit of an anticlimax, especially if you’ve been led to believe this is your
first step to becoming some sort of Hollywood style uber-hacker.

Playing with embedded devices or making objects that feel “enchanted” helps to over‐
come the disillusionment usually encountered with traditional beginner program‐
ming exercises. It’s more fun to program objects that emit rude sound effects on
demand, animate a series of lights on a costume, send secret messages over a net‐
work, or become the heart of an autonomous robot vehicle than it is to underwhelm
the world with a greeting.

Such opportunities allow Python programmers to join the embedded community,
embedded developers to join the Python community, and beginner programmers to
cut their teeth in the evolving embedded Python community gathering around
MicroPython. Everyone is a winner.

Embedded programming is fun. Python programming is fun. But, put them together,
and the fun factor is more than doubled!

Why is this important? Because community is Python’s secret weapon.

Perhaps more than any other computing community, Python’s has a reputation for
friendliness, openness, outreach, and the giving of time to community efforts.

Python programmers (sometimes called Pythonists, Pythonistas and/or Pythonauts)
are well organised, having created the Python Software Foundation (PSF) as a rallying
point for the community. The PSF was created to promote, protect, and advance the
Python programming language (whose intellectual property belongs to the PSF) and
to support and facilitate the growth of a diverse and international community of
Python programmers. This is achieved by supporting the development of the Python
programming language itself, providing technical infrastructure for the wider Python
community, running and supporting a large number of international Python confer‐
ences (PyCons) around the world, and the giving of grants to individuals and organi‐
sations that promote the foundation’s aims.

Details about the Python language, the PSF, the grants programme, upcoming
PyCons, and user groups around the world can be found at the Python language’s
website. However, if you need information specific to MicroPython, then visit the
project’s own website.

Why does MicroPython have its own website rather than an area on the main web‐
site? It’s because of the remarkable history of the project.

It’s a great story and worthy of retelling here.

8 | Chapter 1: What Is MicroPython?

http://www.python.org/psf/
http://python.org/
http://python.org/
http://micropython.org/
http://micropython.org/

8 Viktoriya’s contributions to the MicroPython project have been and continue to be fundamental to its success
and growth. The sacrifices, support, and efforts of non-technical partners of free software developers are often
overlooked. In this case, the MicroPython Kickstarter was very much a Damien and Viktoriya team effort,
with each complementing the other’s skills and expertise.

MicroPython Genesis
MicroPython is the creation of Damien George.

Damien is an Australian physicist who moved to the UK to work as a post-doctoral
fellow at Cambridge University. His area of expertise is revealed on his home page on
Cambridge University’s website:

My research interests centre around model building using extra dimensions, and the
phenomenology of such models at the electroweak scale as is relevant for their testing
at the Large Hadron Collider (LHC).

Damien also studied robotics as an undergraduate and was a competitor in the Robo‐
Cup, an international competition for teams who build robots that play football (soc‐
cer). He designed and wrote a scripting language from scratch for such robots. It was
called Hush, and the language made it easy to change the robot’s artificial intelligence
on the fly.

Obviously, Damien has an enquiring mind, a skill with hardware, and is extraordi‐
narily talented. Back in 2013, he also had time on his hands.

He wondered if it would be possible to write a version of Python for microcontrollers.
Given his experience with embedded systems found in robotics and an earlier project
where he’d written his own embedded-C compiler from scratch, he was uniquely
qualified and got to work. Some months later, he had created “for fun” a working
proof of concept.

To gauge interest in and publicise his nascent project, Damien created a Kickstarter
campaign. He promised that if he managed to raise £15,000, he would finish off his
implementation of Python and provide those supporters who had paid £20 or more
with a suitable microcontroller-based device called the PyBoard. He did this under
the auspices of “George Robotics Limited”, the company he runs with his wife Viktor‐
iya.8

When the campaign closed, it had raised almost £100,000.

The world wanted MicroPython!

Not only did Damien’s campaign exceed all expectations in terms of funding, but he
delivered on his promise: the PyBoard was delivered to almost 2,000 supporters in
2014.

MicroPython Genesis | 9

http://www.robocup.org/
http://www.robocup.org/
http://hush.sourceforge.net/
https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers
https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers

9 With an emphasis on determinism of the virtual machine and memory management.

From that initial seed, MicroPython’s community has grown.

The code is released under an open source licence and hosted on GitHub, with people
from all over the world contributing features, bug fixes, documentation, tools, and
new ports of MicroPython to run on many different sorts of microcontroller.

But that’s not the end of the story.

In 2015, the European Space Agency (ESA) funded the development of MicroPython
to determine the suitability of the language for space applications. In particular, the
research focused on the dynamic configuration of payloads, such as satellites, via
Python. Importantly, the valuable work Damien completed to make MicroPython
more robust for critical embedded systems9 was folded back into the wider project.

It was a winning situation for everyone: MicroPython gained the potential to fly in
space, and the community received improvements to the generic MicroPython imple‐
mentation.

At around the same time, the British Broadcasting Corporation (BBC) announced its
intention to release a small computing-in-education device to be delivered to every
single 11-year-old in the United Kingdom (approximately 1 million devices). The PSF
became a partner because the BBC wanted Python as one of the preferred languages
for the device. Another (unnamed) partner was to create the micro:bit runtime for
Python, but, in April of 2015, they pulled out.

Damien came to the rescue. Fortuitously, Damien’s next-door neighbour in Cam‐
bridge was the hardware engineer at ARM who designed the board for the micro:bit
project. Damien’s neighbour provided him with a prototype board, and he started
porting MicroPython to the device.

The timing of an email from early May 2015 confirms it took Damien only a week to
get MicroPython into a usable state (used with permission):

I signed up to mbed, exported the blinky example for the mkit and got it compiling
locally using a local toolchain. And then using this I managed to get MicroPython
compiling and running on the mkit! There is a surprisingly large amount of room: I
could enable floating point support, aribitrary precision integers, most of the Python
features and a few builtin modules. The REPL works over the USB-UART with history
and tab completion. It even has a working ctrl-C (meaning you can break out of an
infinite loop). I implemented a basic “pyb” module with LED and Switch classes, and a
delay function. So you can do something like:

led = pyb.LED(1)
while True:
 led.toggle()
 pyb.delay(100)

10 | Chapter 1: What Is MicroPython?

https://github.com/micropython
http://www.esa.int
http://bbc.co.uk/

10 Actually, the micro:bit has a beautifully simple radio that makes it perfect for IoT projects, and the Circuit
Playground Express can send and receive messages via infrared light. We’ll explore such capabilities further in
Chapter 10.

Thanks in part to Damien’s efforts, devices capable of running MicroPython are in
the hands of a million children. Most importantly, the BBC’s micro:bit project has
inspired others to recreate the project in their own locale [all the source code and
hardware plans have been released under an open source license]. For example,
developers in Germany are already in the advanced stages of releasing Calliope, based
upon the micro:bit and also capable of running MicroPython.

Success breeds success, and MicroPython came to the attention of the wider world,
including Adafruit Industries.

Adafruit, the brainchild of Limor “ladyada” Fried, is an open source hardware com‐
pany with an international reputation for creating playful devices (such as its
“Feather” line of boards), supplying components (from generic electrical parts to
branded lines of components such as the popular and ubiquitous NeoPixels), and cre‐
ating accessible educational resources available from its website and YouTube chan‐
nel. Adafruit’s MicroPython learning resources are numerous, inspiring, and some of
the best written and helpfully illustrated to be found anywhere. If you’re ever stuck
for inspiration, check out these resources.

One such Adafruit device is the latest version of the Circuit Playground Express. It
runs Adafruit’s customised version of MicroPython called CircuitPython and con‐
tains a remarkable number of onboard input and output peripherals such as a
speaker, microphone, touch-sensitive pins, and multicolour NeoPixels, to name but a
few.

Perhaps the only thing missing from this device is wireless networking for connecting
to the internet. Given how the “Internet of Things” (IoT) is the buzzword du jour, one
would be forgiven for thinking that MicroPython is missing out.10 It is not!

The Internet of Things is a network of everyday objects. Within these everyday
objects are embedded sensors, software, and connectivity to enable data exchange. It
means light bulbs, toasters, refrigerators, flower pots, watches, fans, planes, trains,
automobiles, and even the kitchen sink could contain programmable,
microcontroller-based devices. The vision of IoT is for computing devices to perme‐
ate everything around us and interconnect across the internet. Happily, there are a
couple of cheap microcontrollers—the ESP8266 and ESP32—that are perfect for IoT
projects. Guess what? They both run MicroPython!

This is both a grave and exciting prospect.

MicroPython Genesis | 11

http://microbit.org/
http://tech.microbit.org/
http://calliope.cc/
https://learn.adafruit.com/
https://www.youtube.com/adafruit
https://www.youtube.com/adafruit
https://learn.adafruit.com/category/micropython
https://www.adafruit.com/product/3333

Grave, because of the potential for devices under the control of third parties to be
monitoring and communicating about private spaces and personal aspects of our
lives.

Exciting, because those of us who program can repurpose these devices or make our
own embedded hardware under our own control to create interesting and useful
projects.

MicroPython is at the heart of the exciting potential of networked microcontrollers
because, as mentioned, it has been ported to two WiFi-capable microcontrollers, the
popular ESP8266 and its replacement, the ESP32. The ESP8266 has built-in WiFi,
and the ESP32 also adds additional support for Bluetooth.

Building on their success, Damien and Viktoriya ran a second Kickstarter campaign
in 2016 with the modest aim of raising £6,000 to help support a port to the ESP8266.
They were joined in this endeavour by Paul Sokolovsky, a collaborator and core
MicroPython maintainer who had been making contributions to MicroPython from
just after the first Kickstarter campaign. At almost £30,000 later, it was obvious Dam‐
ien and Viktoriya had another success on their hands, and development got under‐
way. Thanks to these efforts and the support of the Kickstarter backers, MicroPython
runs well on the device. It is possible to write MicroPython code and build embedded
projects that communicate over the internet with a board that costs less than $5. Such
boards contain both the ESP8266 microcontroller and GPIO pins to which peripher‐
als can be attached.

Development on the ESP32 port is in the advanced stages, and it is already quite usa‐
ble (if you can get your hands on a board).

Dive In!
This book explores MicroPython with the aforementioned devices. They’re typical of
the different sorts of devices MicroPython supports, so skill and knowledge transfer
to the many other supported devices should be easy.

All of them are relatively affordable, and each is different enough from the others to
demonstrate that not only is MicroPython an extraordinarily flexible platform, but
also that there’s an interesting diversity in capability, intention, and potential use cases
in the MicroPython device ecosystem. Since new ports of MicroPython and new
devices are released regularly, there is a good chance the device you may be using
doesn’t even exist at the time of writing. Nevertheless, the principles, techniques, and
knowledge found in this book are easy to adapt to new ports and devices.

The remainder of this book is organised into the following sections:

• Introductory chapters that describe the four boards: the original PyBoard, the
micro:bit, Adafruit’s Circuit Playground Express, and the ESP8266/ESP32 family

12 | Chapter 1: What Is MicroPython?

http://bit.ly/kickstart-micropython-on-the-ESP8266

11 The term flash means to erase and re-write memory. When you flash MicroPython onto a device, you’re load‐
ing it into the device’s memory. The term flash originates from the practice of flashing ultraviolet light onto an
EPROM memory chip in order to erase it before being reprogrammed. These days we flash via USB.

of boards. Each chapter describes the boards, their capabilities, how to flash
MicroPython onto the devices,11 put your code on the device, connect to the
Python REPL, and make an LED blink. If you can make an LED blink, all the
essentials are in place.

• A chapter on thinking about embedded development: its scope, potential, oppor‐
tunities, and potential pitfalls. This will primarily use David Rose’s lists of
attributes (mentioned in an earlier footnote) to provide a framework.

• A series of chapters relating to various aspects and capabilities of MicroPython,
introduced and explained by practical examples in code that target the four devi‐
ces: visual feedback, input and sensing, GPIO, networking, sound and music, and
robotics. The examples are written to be extended and to act as launchpads for
your own fun projects.

• A chapter on idiomatic MicroPython. Writing code in such constrained circum‐
stances can pose unique challenges that don’t usually impact regular Python
development. For example, we will cover what to do when you inevitably
encounter memory-related errors. We will also consider what options you have
for improving the performance of MicroPython by squeezing as much perfor‐
mance as possible from the microcontroller.

• A conclusion containing pointers for your next steps.

This book provides you with all the knowledge you’ll need to roll up your sleeves, get
stuck in, and create something wonderful with MicroPython.

Most importantly, using MicroPython will be fun. Let’s get started.

Dive In! | 13

CHAPTER 2

PyBoard

The PyBoard is the first device developed and built for MicroPython (see Figure 2-1).
It can be purchased from the MicroPython website. Damien and Viktoriya’s company
ships it to anywhere in the world.

Figure 2-1. The original PyBoard is about the size of a large postage stamp

15

http://micropython.org/

1 If you are using Microsoft Windows, you may need to install a driver and configure things for USB serial to
work. These steps are all clearly explained in the document “The care and feeding of Pythons at the Redmond
Zoo”.

The board connects to your PC via a micro USB cable. This connection provides two
ways to interact with the device: as a USB flash drive and as a serial-based Python
REPL.1

Perhaps the most common problem for people new to Micro‐
Python is the wrong sort of micro USB cable. There are two sorts:
those that provide just power (often for charging devices such
mobile phones) and those that supply both power and data. It is
this latter type of cable that you should use.
If your board powers up (you should see an LED light up), but you
don’t see it as a connected USB flash drive or cannot connect to the
REPL, then you probably have the wrong type of lead.
This caveat applies to all devices discussed in this book.

The PyBoard contains a small filesystem as part of its flash (on-chip) memory. It also
has an SD card slot with which you can add more available storage. If you access the
PyBoard as flash storage, you will be able to copy files on and off the board’s filesys‐
tem. If you create a Python script called main.py on the board’s filesystem, MicroPy‐
thon will execute this script when it starts up. As a result, scripts can run on the board
without it having to be connected to a PC.

Just like normal Python, you can copy over other Python files, import them in
main.py, and organize your code into appropriate modules.

Once physically connected, it is also possible to use any serial program to connect to
the board to get MicroPython’s REPL prompt. Type Python commands into the REPL
to have them immediately evaluated and executed. This is a great way to explore the
capabilities of MicroPython, experiment, and discover how things work.

Another useful side effect is that any script that may be running from the filesystem is
also in scope within the REPL. Just like regular Python, by pressing CTRL-C the pro‐
gram will interrupt, and you will have access to all the objects used by your script.
This is extraordinarily useful for debugging scripts. It’s also possible to enter a special
“paste” mode by pressing CTRL-E. This lets you copy and paste large chunks of text
into the REPL. Press CTRL-C to cancel or CTRL-D to evaluate the pasted code and
return to normal REPL usage.

16 | Chapter 2: PyBoard

https://micropython.org/resources/Micro-Python-Windows-setup.pdf
https://micropython.org/resources/Micro-Python-Windows-setup.pdf

The Hardware
The PyBoard is, by many measures, the most powerful board used in this book. It has
an STM32F405RG microcontroller, 168 MHz Cortex M4 CPU with hardware floating
point, 1,024 Kb flash ROM, and 192 Kb RAM.

As well as the micro USB slot and micro SD card slot, the board also has a three-axis
accelerometer, real-time clock (with optional battery backup), two switches (reset and
user defined), and four LEDs (red, green, yellow, and blue).

Connectivity with peripherals and other components is via the GPIO pins that run
around three edges of the board.

In addition to the micro USB slot, the PyBoard can run off batteries or another power
source. Connect the positive lead of the power supply to the port marked VIN, and
ground it to GND. The input voltage must be between 3.6 V and 10 V.

Be careful when connecting anything to VIN, since there’s no polarity protection on
the PyBoard. Put simply, make sure you plug things in the right way round!

There are several peripherals avilable for the PyBoard. All can be obtained from the
MicroPython site.

Later in the book, we will make use of the colour LCD display-skin that fits on top of
the PyBoard. The display is a 160 x 128 pixel, 16-bit LCD screen with backlight and a
resistive touch sensor covering the entire screen (see Figure 2-2).

Figure 2-2. The colour LCD display

The Hardware | 17

Another peripheral used will be the audio skin. It also fits on top of the PyBoard. It
has a built-in microphone and speaker, so it’s possible to both record and play sounds
(see Figure 2-3).

Figure 2-3. The audio skin

Other peripherals include a Bluetooth module, prototype skins (upon which it’s pos‐
sible to construct test circuits), and various sorts of servo motors for making things
that move.

Full details of the hardware, including schematics, layout, datasheets for components
on the PyBoard, and datasheets for components found on the peripherals can be
found on the MicroPython website.

Developer Setup
The PyBoard comes with MicroPython already flashed onto the device. However, this
may not be the latest version available for the board, so it is always a good idea to re-
flash the device. It’s not a hard process, and it ensures that you get access to the latest
bug fixes and updates.

18 | Chapter 2: PyBoard

http://docs.micropython.org/en/latest/pyboard/pyboard/hardware/index.html

2 Any conductive wire that fits inside the holes will do.

First, download the latest firmware from the MicroPython website. Second, you need
to disconnect everything from your PyBoard and connect the DFU (Device Firmware
Update) pin to the 3.3 V pin. They are right next to each other, and if you have a mag‐
nifying glass, they’re also labelled on the back of the board. They are highlighted in
the photograph of the front of the board in Figure 2-4.

Figure 2-4. The adjacent DFU and 3.3 V pins on the front of the PyBoard

Connecting these pins is best achieved with a male-to-male jumper wire (bundles of
which can be obtained from any electrical retailer).2

Updating the firmware on your PyBoard requires a DFU utility. There are two
options: dfu-util or pydfu. Installation instructions for dfu-util for Windows,
macOS, and Linux can be found on the dfu-util project’s website. You can download
the pydfu script from MicroPython’s GitHub repository. The pydfu script depends
upon libusb and pyusb. You also need to be an admin-level user for the DFU utilities
to work properly.

Connect the PyBoard to your computer via the USB cable. For dfu-util, type the fol‐
lowing command (the sudo part of the command is only needed for Unix-like operat‐
ing systems):

$ sudo dfu-util --alt 0 -D firmware.dfu

Remember to replace the firmware.dfu file with the latest one you downloaded from
the MicroPython website.

Developer Setup | 19

https://micropython.org/download/
http://dfu-util.sourceforge.net/
https://github.com/micropython/micropython/blob/master/tools/pydfu.py

3 On some Linux distributions, you may need to mount the device yourself. Windows may try to configure the
PyBoard as a serial device. Cancel this process and refer to the “Care and Feeding of Pythons at the Redmond
Zoo” document to configure things manually.

If you have more than one DFU-capable device attached to your
computer (such as Apple’s Magic Mouse), you may get an error
message. The simplest solution is to disconnect the other devices
and try again.

To use pydfu to update the firmware, use the following command:

$ sudo python pydfu.py -u firmware.dfu

After the firmware has updated, disconnect the PyBoard from your computer and
remove the jumper lead between the DFU and 3.3 V pins.

When the device appears as a removable USB flash drive,3 it will, to start with, con‐
tain four files:

boot.py

Run when the device starts and sets up various configuration options.

main.py

The main script that contains your code. This is executed immediately after
boot.py.

README.txt

Contains basic information about the PyBoard.

pybcdc.inf

The Windows driver to configure USB serial as described in the “Care and Feed‐
ing of Pythons at the Redmond Zoo”.

Open the main.py file in your text editor. Replace the code comment you find therein
with the following snippet of code:

import pyb
pyb.LED(4).on()

The pyb module contains all the functions and classes needed to work with the
PyBoard’s hardware. The script above simply switches on LED 4 (the blue LED).

Save and close the main.py file, then eject (or unmount) the device, just as you would
do with a regular USB flash drive. Next press the RST button just below the micro
USB port to reset the board. The blue LED should light up.

Congratulations! You’ve just created your first MicroPython program and run it on
the PyBoard!

20 | Chapter 2: PyBoard

https://micropython.org/resources/Micro-Python-Windows-setup.pdf
https://micropython.org/resources/Micro-Python-Windows-setup.pdf

But we’re not finished yet. You need to be able to work interactively with the PyBoard
via the REPL. This will allow you to type Python directly into a command prompt
and have the device evaluate your code immediately.

On Windows, assuming you have set up the Windows driver for USB serial, you
should use putty.exe to connect to the board. Use Window’s Device Manager to dis‐
cover the COM port to which the PyBoard is connected. Within the putty applica‐
tion, click Session in the lefthand panel, click the Serial radio button, enter the COM
port discovered via the Device Manager in the Serial Line box, and then click the
“open” button.

If you use macOS and Linux, you have a choice of commands to connect to the
REPL. I like picocom because it works well and is very simple to use.

On macOS and Linux, the picocom command may not be installed.
If this is the case, you have two options:

1. Install the command with a package manager for your OS (for
example, use brew on macOS or apt-get or equivalent pack‐
age manager on Linux).

2. Use the screen command instead, although this isn’t as user-
friendly as picocom. You don’t need to supply the baud rate
when using screen.

To exit screen, type CTRL-A CTRL-\.
There are actually several alternatives to picocom, some of which
may need you to specify the baud rate of the connection. For
MicroPython’s REPL, this is always 115200.

On macOS, open the terminal and type:

$ picocom --baud=115200 /dev/tty.usbmodem*

On Linux, open a terminal and type:

$ picocom --baud=115200 /dev/ttyACM0

You may have to use /dev/ttyACM1 (or a higher number) depending on what else you
have connected to your machine. Correct permissions to access the ttyACM devices
may be needed; for example, you may need to be in the uucp or dialout groups (or
just use sudo).

No matter the operating system or how you connect to the REPL, you should end up
seeing the three chevrons familiar to Python programmers the world over. You may
need to press return, CTRL-C [interrupt], or CTRL-D [soft reboot] for the chevrons
to appear if no bytes were read from the serial port during connection.

Developer Setup | 21

http://bit.ly/putty-latest

Welcome to the world of interactive programming on the REPL! It’s just like the regu‐
lar Python prompt; so if you already know Python, have a look around with the dir
and help built-in functions.

The following session is typical:

>>> print("Hello, World!")
Hello, World!
>>> 1 + 1
2
>>> 7 / 5
1.4
>>> 7 // 5
1
>>> 7 % 5
2
>>> "hello".upper()
'HELLO'
>>> import pyb
>>> pyb.LED(1).on()
>>> pyb.LED(1).off()
>>> while True:
... pyb.LED(1).toggle()
... pyb.delay(500)
...

Remember to use CTRL-C to interrupt the infinite loop at the end of the example.
MicroPython’s REPL has built-in command history and autocomplete if you hit TAB.
It’s fun for exploring how the board and MicroPython work together.

In the preceding code example, the pyb.delay function is used to
create a pause in the infinite loop, so the LED toggles every 500
milliseconds.
For historical reasons, different boards cause a pause in the execu‐
tion of code in different ways.
Depending on the device you’re using, Python’s standard
time.sleep function is not always available (although it is available
for the PyBoard). Furthermore, while time.sleep uses seconds as
its unit to measure duration, other equivalent functions such as
pyb.delay on the PyBoard and microbit.sleep on the micro:bit
use milliseconds.
Always make sure you check what unit of measurement to use!

Congratulations, you have the PyBoard set up and ready to go! Take some time to
play and explore how the device and MicroPython work together. Documentation
and tutorials for the PyBoard can be found at http://docs.micropython.org.

22 | Chapter 2: PyBoard

http://docs.micropython.org/

CHAPTER 3

BBC micro:bit

The BBC micro:bit is a simple yet powerful computing device for beginner program‐
mers. It is small, cheap, and easy to use. The British Broadcasting Corporation (BBC)
created the device to promote digital creativity. In other words, the BBC wants to fos‐
ter the skills and confidence needed for anyone to make cool stuff with computers!

This isn’t the first time the BBC has created a computing device for beginner pro‐
grammers. In the 1980s, I first learned to program on an 8-bit BBC microcomputer
(see Figure 3-1). Every school in the UK was given one and, luckily for me, my father
was a head-teacher (school principal).

One weekend he came home with several large boxes containing a monitor, the com‐
puter, leads, and various manuals. His intention was to learn how to use the computer
in school. However, it took only half an hour before my brother and I had managed
to take over and get our young hands on the device (I was eight years old).

Compared to today’s computers it wasn’t particularly powerful, usable, or friendly:
when you turned it on, it made a “bloop-bleep” sound and displayed a blinking cur‐
sor. To my eight-year-old self, it was daring me to type something.

I believe my first ever interaction with a computer was typing HELLO, hitting ENTER,
and getting the result: Mistake.

I had absolutely no idea why the computer thought I’d made a mistake, but I remem‐
ber feeling excited to have a computer react to something I had typed. It turns out
that I had made a syntax error: the computer didn’t know how to make sense of my
instruction. I quickly learned that computers do not speak English.

However, the BBC micro understood a simple programming language called BBC
BASIC. It was a friendly sort of a language because many of the instructions to make
the computer do cool stuff were English words. Furthermore, all the instructions in

23

BASIC were written on numbered lines, so you knew exactly where you were in the
program and in what order the sequence of commands would be executed.

Here’s my first BASIC program. Can you work out what it does?

10 CLS
20 PRINT "YOU ARE AN IDIOT"
30 GOTO 20

(Actually, I copied this program from an example in the manual, but I think the man‐
ual’s line 20 printed something less antagonistic.)

Can you imagine how cool this felt? It was as if I knew a special sort of magic to make
computers do exactly what I wanted. All I needed to do was work out the correct
incantation or spell.

Figure 3-1. A BBC microcomputer from the 1980s

What do my youthful adventures with an ancient BBC microcomputer have to do
with the BBC’s modern micro:bit and MicroPython?

The BBC micro:bit is both a device and an idea that was best articulated by the leader
of the team who created the original BBC micro all those years ago:

The aim was to democratise computing. We didn’t want people to be controlled by it, but to
control it.

—David Allen, project editor, BBC Computer Literacy Project

Without the profound realization that I could make computers do interesting stuff, I
wouldn’t be a programmer today.

24 | Chapter 3: BBC micro:bit

Given this historical context and the aim of promoting digital creativity, how has the
BBC designed a device to inspire, educate, and entertain today’s generation of begin‐
ner programmers?

The Hardware
The device is about the size of a credit card and comes packed with exposed and
labelled hardware.

The front of the device has two buttons, labelled A and B. A 5 x 5 matrix of LEDs
between the buttons acts as a simple display (see Figure 3-2). The LEDs glow at nine
different levels of brightness and emit red light.

Figure 3-2. The front of the BBC micro:bit

Across the bottom is an edge connector used to attach the device to other equipment.
This is the general-purpose input/output (GPIO): it allows the device to consume
input from and generate output for other components that may be attached.

The edge connector consists of several connectors called pins. They are so named by
convention because the GPIO hardware interfaces on many other types of device are
actual pins rather than an edge connector. Some of the pins are wide enough to be
labelled and for an alligator clip to be attached to them. The other pins are best
accessed by plugging the device into a female edge connector attached to a

The Hardware | 25

breadboard (a device onto which electronic components can be easily placed and re-
arranged).

The whole layout resembles a face. The buttons are eyes, the display is a nose, and the
edge connector resembles a set of teeth. This anthropomorphisation of the device
(making it look like a person) is intentional: it makes the device intriguing, even
when it’s switched off.

The back of the device reveals the various labelled components that make the device
work (see Figure 3-3).

Figure 3-3. The back of the BBC micro:bit

The edge connector (labelled PINS) continues along the back. Just above it and to the
left are the device’s compass (an NXP/Freescale MAG3110 three-axis magnetometer
sensor) and accelerometer (an NXP/Freescale MMA8652). These sensors allow the
device to work out the direction the device is pointing, how it is oriented in space,
and to detect gestures such as a shake or a flip.

Above these sensors is the microcontroller “brain” of the device. It is a 32-bit Nordic
nRF51822 ARM Cortex-M0 running at 16 MHz, with 256 kilobytes of flash memory,
16 kilobytes of RAM, and a 2.4 GHz radio capable of Bluetooth low energy [BLE]
networking. The antenna for the radio is immediately above the microprocessor (it
looks like the pattern of battlements on a castle).

26 | Chapter 3: BBC micro:bit

1 If you’re using a Mac, macOS will complain that the USB flash drive wasn’t properly ejected. It is quite safe to
ignore this warning.

To the right of the antenna at the top of the device is a micro USB port (just like the
one to be found on the PyBoard). Use it to connect the device into your computer via
a USB data cable. To its right is another button that, when pressed, will reset and
restart the device. Finally, at the top right is a socket for connecting a battery holder.

It is important to note that the Bluetooth protocol is completely ignored by Micro‐
Python since the software needed to make it work takes up an inordinate amount of
flash memory and RAM. However, MicroPython provides a much simpler radio
module, so the devices can still communicate over a very simple network.

Significantly, all the schematics for the device’s hardware are available for free and
covered by a liberal open source license.

Why is this important?

Anyone (including you) could use the schematics to manufacture the device. If you
have the skill and desire, there is nothing to stop you from updating, modifying, and
enhancing the board to your own design. It’s not just the hardware that is open: all
the software related to the project is released under open source licenses.

Developer Setup
Just like the PyBoard, when you connect the micro:bit to your PC via USB, it shows
up as a USB flash drive. It’s also possible to connect to MicroPython’s REPL in the
same way as with the PyBoard.

Unlike the PyBoard, the usual way to get code running on the device is to create a hex
file that combines the MicroPython runtime and your code. This hex file is flashed onto
the device by copying it onto the USB flash drive. The device isn’t actually a USB flash
drive; it’s just pretending to appear like this so the operating system on your PC
allows you to copy over hex files. Once the hex file is flashed, the device restarts, and
it reverts to a relatively empty USB flash drive.1

The micro:bit also has a very small filesystem in its flash memory (around 20k). Each
time you flash the device with a new hex file, this filesystem is erased because the hex
file overwrites the flash memory of the device. However, any files you copy onto the
device or save from your MicroPython script will survive between reboots. Working
with the filesystem requires a special tool called microfs that uses the USB serial con‐
nection to read and write to your local filesystem. We will cover how this works later
in the chapter. However, if you flash the device with a hex file containing just the
MicroPython runtime (rather than the usual hex file containing the runtime com‐
bined with your Python script), you could copy over a main.py file that, upon restart,

Developer Setup | 27

http://tech.microbit.org/

MicroPython will detect and run, just like on the PyBoard. Furthermore, if you copy
other Python files onto the device, they can be imported just like in “regular” Python.

The most important point to remember is that if you re-flash the device with a new
hex file, the contents of the filesystem are permanently erased.

The quickest way to start writing code for the micro:bit is via a browser-based editor.

To ensure that Python was part of the official BBC branded web offering, UK-based
volunteers for the Python Software Foundation (PSF) created the browser-based edi‐
tor for the project. The source code is hosted on GitHub, and you can try it out
online at http://python.microbit.org.

To flash your code onto the micro:bit with the browser-based editor, download the
hex file from your browser (there’s a big “download” button that does this for you),
find it on your local filesystem, and then drag it into the directory that shows up as
the USB storage device when you plug in the micro:bit. Unfortunately, browsers don’t
let you interact directly with the device, thus causing this drag-and-drop kerfuffle.

Whilst writing the browser-based editor, the PSF tested it with lots of teachers and
students in the UK. The feedback was clear: people find it convenient to use the
browser-based solution, but the user experience is terrible to the extent that it negates
the initial convenience.

Users asked for an editor that didn’t have such problems yet was simple and conve‐
nient enough for beginner programmers. To this end, the same group of volunteer
developers have written a set of Python modules and tools to make it easy to interact
with the device from a laptop or regular PC. Built on top of this work is a simple code
editor called Mu (Figure 3-4). This is ideal for beginner programmers.

Mu works with Windows, macOS, Linux, and on the Raspberry Pi. Installation
instructions and links to download the right version of Mu for your operating system
can be found on the project’s website.

In Mu, to flash MicroPython code onto the device, simply press the “flash” button.
Mu also connects directly to the device’s REPL by autodetecting its presence. It also
provides a very simple file transfer window for putting and getting files on and off the
device’s small filesystem.

28 | Chapter 3: BBC micro:bit

https://github.com/bbcmicrobit/PythonEditor
http://python.microbit.org
https://codewith.mu/

Figure 3-4. The beginner-friendly Mu editor

Mu espouses a minimalist philosophy:

Less is more.
Mu has only the most essential features, so users are not intimidated by a baffling
interface.

Keep it simple.
It’s quick and easy to learn Mu; complexity impedes a novice programmer’s first
steps.

Walk the path of least resistance.
Whatever the task, there is always only one obvious way to do it with Mu.

Have fun.
Learning should inspire fun; Mu helps learners quickly create and test working
code.

Developer Setup | 29

2 In this example, Unix-style paths are used. Windows paths use a \ to show the path hierarchy.

If you use Mu and think, “Why doesn’t Mu have feature X?” then you are probably
advanced enough to use a proper programming editor, graduate away from Mu, and
use the utilities created to interact directly with the micro:bit. My suggestion is, only
use Mu if you need a simple and beginner-friendly programming environment. If you
find you’re missing features in Mu, it’s easy to use the Python tools that Mu uses to
interact with the device, but with your own code editor.

The two modules that Mu uses to interact with the device are called uflash (for flash‐
ing the MicroPython runtime and code onto the device) and ufs (for interacting with
the device’s filesystem). In both cases, you pronounce the “u” (µ) as “micro”, as in
“microflash”. Both modules include code and command-line tools to interact with the
device. Both are available as Python packages on PyPI, so if you have a relatively
recent version of Python installed on your machine, use the pip command to install
them in the usual way:

$ pip install uflash
$ pip install microfs

If you use the uflash command without any arguments, it will attempt to find a con‐
nected micro:bit and flash an unmodified MicroPython runtime onto the device. To
flash a Python script onto the device, simply pass the .py file as the first argument to
the command:

$ uflash my_script.py

Under the hood, uflash combines the default MicroPython runtime with your script
so that the script runs when the micro:bit boots up. If you use the -w or --watch flag,
then uflash will watch the referenced file for changes so that the device will be flashed
automatically every time you change your file.

Should you have several devices plugged in, you can flash them all at once, providing
you pass the paths on the filesystem where they appear as USB flash storage devices:2

$ uflash my_script.py /path/to/MICROBIT1 /path/to/MICROBIT2

If you’re developing MicroPython and have compiled a new hex representation of the
runtime, you can specify that uflash use it instead of the built-in version of Micro‐
Python:

$ uflash -r firmware.hex my_script.py

The -r flag could be replaced with --runtime=firmware.hex.

The ufs tool is designed to feel like FTP when interacting with the micro:bit’s filesys‐
tem. For example, use the ufs ls command from your terminal to list the files on the
device. To delete a file on the device, you simply ufs rm my_file.txt. Copying a file

30 | Chapter 3: BBC micro:bit

https://uflash.readthedocs.io/en/latest/
https://microfs.readthedocs.io/en/latest/
https://pypi.python.org/pypi

3 Remember, the microbit.sleep function uses milliseconds to measure duration.

onto the device is achieved with ufs put path/to/my_file.txt, whereas copying a
file from the device into your current directory is ufs get my_file.txt.

MicroPython on the micro:bit comes with a microbit module that helps you to inter‐
act with the device directly. It also includes various other modules that make it easy to
do fun things (such as make a network of devices, make sounds, and work with funky
peripherals like NeoPixels). The microbit module is to the micro:bit as the pyb mod‐
ule is to the PyBoard.

To check everything is working, enter the following code into the browser-based edi‐
tor, or (preferably) Mu, and flash the micro:bit. After a few seconds, it’ll restart, and
the LED in the middle of the display will blink3 at you:

from microbit import display, sleep

while True:
 display.set_pixel(2, 2, 9)
 sleep(500)
 display.set_pixel(2, 2, 0)
 sleep(500)

If you are using Mu, it’s very easy to get access to the REPL: click the REPL button! If
you don’t have Mu available, you can use exactly the same commands as you would
with the PyBoard. For example, picocom --baud=115200 /dev/ttyACM0 should just
work.

MicroPython on the micro:bit has a target audience of beginner programmers, many
of whom will be teenagers. As a result, there are a number of Easter eggs in this ver‐
sion of MicroPython. The REPL is a good way to look for such special “features”. A
good place to start is to read the list of available modules found in the default text
returned by the help function.

Detailed documentation for the micro:bit and a Python tutorial for beginner pro‐
grammers can be found at http://microbit-micropython.readthedocs.org/.

Developer Setup | 31

http://microbit-micropython.readthedocs.org/

CHAPTER 4

Adafruit Circuit Playground Express

Star Trek is one of my favourite science-fiction universes.

Upon reflection, a big reason for its appeal is that Star Trek’s fictional technology is
generally a force for good. It facilitates progress (technology is used to help others), a
humane and open-minded outlook (technology allows characters to live, work, and
communicate with each other despite physical, physiological, and cultural differ‐
ences), and fearless exploration of our universe (they fly around in spaceships!).

One of my favourite Star Trek technologies is the “tricorder,” a device used by Mr.
Spock, Bones, and others to sense the environment, make computations, and react to
things with flashing lights or strange chirruping noises that obviously make perfect
sense to citizens in the 23rd century.

I’ve often thought it’d be cool to own such a device.

With Adafruit’s Circuit Playground Express, my dream has come true. Even better, it’s
fun to imagine Mr. Spock programming such a device in Python.

The tricorder is a classic example of an enchanted device, although not for magical
reasons. The imagined technology of the 23rd century is so advanced to our primitive
eyes that we react to it in the way Arthur C. Clarke suggests: it’s indistinguishable
from magic. The Circuit Playground Express is the antidote to such misplaced won‐
derment. Because it is tricorder-ish, it’s packed full of sensors and modes of feedback.
It lives up to its name: it’s a playground for quickly learning about how embedded
devices work so you too can explore strange new worlds, seek out new life and new
civilizations, to boldly go where no Python programmer has gone before!

It is because of the hard work of Adafruit, who make embedded development fun and
a source of wonder, that Python programmers can emulate Spock, Bones and those
personnel in the red uniform that always get shot while on planet-bound expeditions.

33

As with the previous boards, there are two ways to interact with the device: via code
stored on the onboard flash filesystem and via the REPL.

As before, when you plug the device into your computer via a micro USB cable, it’ll
appear as a flash storage device, and you gain access to the REPL in exactly the same
way as with the PyBoard and micro:bit.

The Hardware
There are two versions of this device: an older version based upon the ATmega32u4
microprocessor that’s not capable of running MicroPython, and the more powerful,
newer version that uses the ATSAMD21G18 ARM Cortex M0 microprocessor. It is
this latter version that we will be using in this book.

Just like a Star Trek tricorder, the Circuit Playground Express is packed full of input
(sensing) and output (signalling) features. In Figure 4-1, if you look at the side of the
board with the components on it, you’ll see they’re labelled and sometimes given
names.

Figure 4-1. Adafruit’s Circuit Playground Express is packed full of inputs and outputs.

If you hold the device with the components facing towards you and with the micro
USB port at 12 o’clock, you’ll notice a green LED immediately to the socket’s left.
Around the edges are 14 pads that make it easy to connect the device to other stuff
via alligator clips. Each pad is labelled (for example, some are power-related pads
labelled 3.3 V or GND). Those pads not related to power are capable of capacitative
touch sensing (i.e., just like the micro:bit’s pins 0, 1, and 2, they detect if they have
been touched).

34 | Chapter 4: Adafruit Circuit Playground Express

In the six o’clock position is the power connector into which you can provide between
3.5 V to 6.5 V DC. The board automatically regulates such voltage down to 3.3 V. The
power connector works especially well with a 3 x AAA battery holder, although other
options, such as lithium ion or lithium polymer batteries, could be used.

Just within the pads are 10 NeoPixel LEDs. These are extraordinarily cool since you
can assign each LED an RGB colour and light it up. That’s over 16 million shades of
colour, so you can make blinkenlights on steroids! These NeoPixels are a great way to
indicate status: red for danger, green for safety; throbbing slowly to indicate peace,
flashing quickly for urgency. The NeoPixels are assigned numbers from 0–9, with
position 0 to the left of the USB port and below the power LED, with the other posi‐
tions counting up in an anti-clockwise direction.

In the central area of the device are three push buttons labelled A, B, and RESET. The
A and B buttons are used for arbitrary on/off user interactions, whereas the reset but‐
ton obviously reboots the board.

There’s also a slide switch just above the battery connector (at six o’clock). It has a
small nub to move to the left or right. Once in a certain position, it remains in that
position (in contrast to push buttons that are only “on” when they’re pressed down).
Just like the buttons, the slide switch is used to indicate arbitrary on/off user input
but whose state must remain persistent.

On either side of the reset button are devices for working with infrared light: a trans‐
mitter (on the left) and receiver (on the right). This allows the device to communicate
with other Circuit Playground Express boards in line of sight and within range. Put
simply, communication works in the same way as your TV remote control.

There are lots of environmental sensors on the board. Just above button A is an ana‐
log light sensor that can be used to measure the brightness of the ambient light. Just
above button B is a thermistor, a sort of resistor that changes its resistance depending
on the ambient temperature, thereby allowing the temperature to be measured.
Between the infrared transmitter and receiver and just below the reset button is a
three-axis accelerometer that allows the measurement of the gravitational force
applied in X, Y and Z directions. Consequently, not only can gravity be sensed but
also tilt, motion, and gestures. Below button B is a small microphone to detect audio
levels by turning sound waves into electrical signals that we can, in turn, measure.

That’s quite a lot of ways for the device to sense its environment!

Another component that is useful for output is just below button A. The very small
black box is actually a miniature speaker. The Circuit Playground Express wouldn’t be
like a tricorder without the ability to make bleeps, bloops, and whistles for signalling
status. It’s also possible to play very simple melodies, although don’t expect great
audio quality, since it sounds like one of those annoying bleeping birthday cards.

The Hardware | 35

1 In software, a fork is when developers take a copy of the source code from one project and start independent
development that doesn’t get merged back into the original project.

2 If the NeoPixels turn red, then the bootloader couldn’t start. Try another USB cable.

Finally, in case you were wondering, the ATSAMD21G18 microcontroller is the chip
just above the reset button. It runs at 48 MHz with 256 KB of onboard flash memory
and 32 KB of RAM. The board also has a hefty 2 MB of additional flash memory stor‐
age.

Of all the boards covered in this book, the Circuit Playground Express has the most
diverse and immediately available onboard input and output capabilities. As the
name suggests, it’s a great platform for playful sensing, detecting, and feedback—just
like a tricorder.

Developer Setup
Adafruit uses a fork of MicroPython called CircuitPython.1

CircuitPython is developed as free software by Adafruit, and it welcomes contribu‐
tions from the wider community. It tracks the major releases of MicroPython rather
than following everything on the upstream MicroPython master branch. Work is
ongoing and marked as “beta”, meaning most APIs will be stable if not bug free. Ada‐
fruit makes a number of MicroPython-capable boards; and by using CircuitPython,
it’s able to ensure that the APIs remain consistent across its range of devices. If you
learn to program the Circuit Playground Express with CircuitPython, then you’ll be
able to transfer your skills and knowledge to any other Adafruit board that runs
CircuitPython.

The Circuit Playground Express may not come with CircuitPython flashed onto it.
Also, given the ongoing development of the project, you should flash the latest ver‐
sion of the CircuitPython firmware onto the device in order to get the latest bug fixes
and features.

It’s very easy to update the Circuit Playground Express thanks to a bootloader called
UF2. You simply put the device into bootloader mode then drag .uf2 files onto the
device.

At time of writing, the builds of CircuitPython for all Adafruit’s boards are created as
releases on GitHub. You’ll need to download the latest UF2 version for the Circuit
Playground Express.

To put the device into bootloader mode, connect it to your PC and double-tap the
reset button. Once the bootloader is active, the small red LED will fade in and out, the
onboard NeoPixels will turn green,2 and the device will show up as a USB mass stor‐
age device called CPLAYBOOT.

36 | Chapter 4: Adafruit Circuit Playground Express

https://github.com/adafruit/circuitpython/releases

3 If you find yourself using an Adafruit device that isn’t part of the Express family of boards, you’ll have to use a
command-line utility called bossac to update CircuitPython. This is fully explained on the referenced web
page.

4 CircuitPython also allows you to use the name code.py as an alternative to main.py.

5 Remember, Python’s time.sleep function uses seconds to measure duration.

Copy the .uf2 file onto the drive, and, once complete, restart the board. It should
reappear as a USB mass storage device called CIRCUITPY.

That’s it! If you encounter any problems, or you want to explore other ways to update
the device, check out the comprehensive instructions on the Adafruit website.3

The final (optional but recommended) step is to copy the Adafruit CiruitPython driv‐
ers bundle onto the device. It provides useful CircuitPython libraries for interacting
with the hardware. The libraries are of two sorts: foundational (used to provide criti‐
cal functionality) and drivers (built on top of the foundational libraries to provide
access to sensors and other peripherals). The latest release of the bundle can be
downloaded from the project’s GitHub repository. Copy the contents of the downloa‐
ded ZIP file onto the device and import the modules as you would any Python library.

Just as with the PyBoard, when you plug the device into your computer, you will see it
as a USB mass storage device. If you create or update the main.py file on this filesys‐
tem, the code therein will be run on startup.4 Connect to the Python REPL on the
device in exactly the same way as with the PyBoard.

The following REPL-based example makes the red LED labelled D13 toggle twice a
second:5

>>> from board import D13
>>> import digitalio
>>> import time
>>> led = digitalio.DigitalInOut(D13)
>>> led.switch_to_output()
>>> while True:
... led.value = not led.value
... time.sleep(0.5)
...

As with all versions of MicroPython, use CTRL-C to interrupt the infinite loop at the
end of the preceding example.

Congratulations, you have the Circuit Playground Express set up and ready to go!
We’ll cover how to make use of the board’s many features in later chapters. The docu‐
mentation for CircuitPython can be found at https://circuitpython.readthedocs.io/.

Developer Setup | 37

http://bit.ly/adafruit-uf2-bootloader
https://circuitpython.readthedocs.io/en/latest/docs/drivers.html
https://circuitpython.readthedocs.io/en/latest/docs/drivers.html
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://circuitpython.readthedocs.io/

If you’re feeling adventurous, you could build CircuitPython from
source in order to get the bleeding-edge fixes and new features.
The source code for CircuitPython is hosted on GitHub and is
labelled as a fork of the main MicroPython repository. Clone the
CircuitPython repository and ensure that you have the gcc-arm-
none-eabi compiler installed on your machine. How you do that is
down to your operating system and beyond the scope of this book,
although it should be relatively simple if you use a package manager
to install the compiler.
Assuming that you have the compiler toolchain and the source
code, drop into your operating system’s shell. Change the directory
into the atmel-samd subdirectory of the repository that you just
cloned. Next, use the familiar make command to build the firm‐
ware:

make BOARD=circuitplayground_express

The board related argument identifies the Circuit Playground
Express’s microprocessor as the target. If the build is a success,
you’ll find a firmware.bin file in the build-cplay_m0_flash sub‐
directory.
This file needs to be converted to the uf2 format with a utility cre‐
ated by Microsoft and hosted on GitHub. Simply pass in the path to
the firmware.bin file and use the -o flag to specify the output
name. The following Linux based example is typical:

$./uf2conv.py firmware.bin -o firmware.uf2
Converting to uf2, output size: 410624,
 start address: 0x2000
Wrote 410624 bytes to firmware.uf2.

It is the firmware.uf2 file that must be copied onto the device as
per the earlier instructions.

38 | Chapter 4: Adafruit Circuit Playground Express

https://github.com/adafruit/circuitpython
https://github.com/Microsoft/uf2/blob/master/utils/uf2conv.py

CHAPTER 5

ESP8266 / ESP32

The Internet of Things is a buzzword for embedded devices connected to the inter‐
net. Such devices are attached to all sorts of everyday objects making it easy to control
or sense the object’s state via the attached embedded device. It means computers are
in everything around us. We are surrounded by computing devices that are uniquely
identifiable and interconnected over the internet.

Such objects turn the world inside out.

In a sense, we no longer have objects that do stuff; we just have computers: computers
that light things, toast bread, water plants, keep time, air-condition buildings, fly in
the sky, roll along rails, and drive on roads.

Such embedded computers allow us to do three things:

Sense stuff
Collect and share data about their environment.

Control stuff
Affect changes in the environment or device.

Compute stuff
Work out what to do with data or signals such that they are autonomously useful.

As Bruce Schneier points out, you can think of the sensors as the eyes and ears of the
internet, the controllers as the hands and feet, and the computing power as some sort
of a brain. He explains:

This is the classic definition of a robot. We’re building a world-size robot, and we don’t even
realize it.

—Bruce Schneier, Schneier on Security Blog

39

http://bit.ly/schneier-security-iot

At the centre of this world we find devices based upon microcontrollers like the ubiq‐
uitous ESP8266 and its replacement, the ESP32.

The ESP8266 microcontroller has WiFi and a full TCP/IP network stack built into a
very cheap chip (devices can cost as little as a dollar) (see Figure 5-1). It’s the creation
of Shanghai-based Espressif Systems. The ESP8266’s remarkable capabilities, size, and
cost only came to the attention of hackers in 2014 and since then, much effort has
been put into making MicroPython run on the device. As a result, networked Inter‐
net of Things projects are easy to build with MicroPython. The ESP8266’s low cost
makes the sort of networked projects that may have appeared intimidating, unfami‐
liar or unaffordable, a fun, cheap and accessible opportunity for more people. Python
is in the Internet of Things!

Figure 5-1. A typical ESP8266-based board

Following the success of the ESP8266, Espressif Systems has released a new micro‐
controller with similar yet improved capabilities. The ESP32 has both integrated WiFi
and dual-mode Bluetooth (i.e., it’s capable of both classic and low-energy variants of
Bluetooth). Furthermore, it’s a dual-core microprocessor and includes cryptographic
hardware acceleration for various common algorithms as well as a cryptographically
secure random number generator. There is a working port of MicroPython for the
ESP32, although development is ongoing. As a result the ESP8266 port of Micro‐
Python is currently more stable, although expect the ongoing work on the ESP32 port
to mature rapidly as the board becomes more popular. The ESP8266 and ESP32 are
similar enough that MicroPython makes them feel the same from a programmer’s

40 | Chapter 5: ESP8266 / ESP32

https://hackaday.com/2014/08/26/new-chip-alert-the-esp8266-wifi-module-its-5/

1 See the manufacturer’s data sheet for full details of the ESP8266 microcontroller.
2 See the manufacturer’s data sheet for full details of the ESP32 microcontroller.

perspective. Anything you write for the ESP8266 should run with almost no changes
on the ESP32.

The Hardware
Unlike the other devices mentioned in this book, ESP8266 and ESP32 are both just
bare microcontroller chips rather than full, developer-friendly devices. However, you
can buy different devices and development boards that contain, say, the ESP8266.
This makes discussion of the hardware problematic to some extent, although there
are often common features among such devices. Of course, the microcontroller’s
capabilities remain the same across devices.

The ESP82661 runs at 80 MHz and contains 64 Kb of instruction RAM and 96 Kb of
data RAM. Instruction RAM is referenced during the processor’s instruction fetch,
whereas data RAM is used to store data. It is also capable of supporting external flash
memory—although the availability of this will depend on the board.

As a WiFi-capable device, it supports the IEEE 802.11 b/g/n wireless specifications
along with WEP or WPA/WPA2 authentication (as well as open networks). The
microcontroller also has 16 GPIO pins for working with peripherals, although gener‐
ally only 13 are available and usable.

The ESP322 is a far more capable device. It is a dual-core microprocessor operating at
either 160 or 240 MHz, depending on configuration, and contains 520 Kb of RAM.
External flash memory is also supported but will depend upon your board. The
device also has 36 GPIO pins for interacting with peripherals, although generally only
34 are available and usable.

Its networking capabilities are of two types, WiFi (support for IEEE 802.11 b/g/n/e/i)
and Bluetooth (version 4.2 in both classic and low-energy [BLE] modes). Security
features include WFA, WPA/WPA2 and WAPI WiFi authentication, secure boot, flash
encryption, and cryptographic hardware acceleration for AES, SHA-2, RSA, and ECC
algorithms.

Generally, devices containing these chips will look a lot like the one in the illustration.
They will probably include DIL (dual inline) headers already soldered onto the board
(these look like actual pins to which it is possible to connect peripheral devices) and
usually an LED or two and a couple of buttons (one of which is usually a reset but‐
ton).

Two types of board are often advertised: module or development boards.

The Hardware | 41

http://bit.ly/ESP8266EX-datasheet
http://bit.ly/ESP32-datasheet

Module boards often don’t have the standard connections for peripherals, so for the
purposes of ease of experimentation and learning, it is probably better to purchase a
development board that comes with the standard connections (such as the aforemen‐
tioned DIL headers).

ESP8266 boards are remarkably cheap. They range from “white label” boards avail‐
able in bulk from Chinese manufacturers for around a dollar each to branded boards
(such as those produced by Adafruit) that cost around $5. Due to its relative newness
and lack of availability, ESP32 boards cost around $30. However, this is likely to
change both in terms of price and availability as the ESP32 becomes more popular.

Developer Setup
ESP8266
Unlike the other boards, MicroPython probably isn’t already flashed onto the device,
so you will have to do it yourself. It is easy to do.

You will need to download the most recent build of the firmware from MicroPython’s
release page. There are three choices: the stable build for 1024 Kb devices (the most
common) and daily builds for both the 1024 Kb and 512 Kb variants of the device.
You will know you have a 512 Kb variant if you get an error when flashing the device
with the 1024Kb variant, “Unlikely to work as data goes beyond end of flash”.

To flash the firmware, the device must be in boot-loader mode. Then use a utility to
copy the firmware. Unfortunately, the precise procedure for putting a device into
boot-loader mode depends upon the device, and you will need to consult the manu‐
facturer’s documentation. However, if your board has a USB connector, USB-serial
converter, and the DTR and RTS pins are wired appropriately (and this is the case for
most development boards such as Adafruit’s HUZZAH and NodeMCU boards), then
boot-loader mode will be obtained automatically if you use the esptool.py com‐
mand.

To install the esptool.py utility, download the most recent release from the project’s
GitHub repository (making sure it is at least at version 1.2.1) or by using Python’s pip
command:

$ pip install esptool

42 | Chapter 5: ESP8266 / ESP32

https://micropython.org/download#esp8266
https://micropython.org/download#esp8266
https://github.com/themadinventor/esptool/
https://github.com/themadinventor/esptool/

Once installed, use the utility to erase the flash memory:

$ esptool.py --port PORT erase_flash

It is important that the PORT is replaced with a reference to the actual port PC to
which the device is connected on your PC. For example, on Linux it will be some‐
thing like /dev/ttyUSB0, and on Windows it will be a numbered COM port like COM4.
This may take a few seconds, but the command will update you with its progress.

Next, flash the firmware (remembering to replace PORT with the actual port reference
and PATH/TO/firmware.bin with the actual path to the firmware you downloaded
earlier):

esptool.py --port PORT --baud 460800 write_flash \
 --flash_size=detect 0 PATH/TO/firmware.bin

If you get errors, you may need to reduce the baud setting from 460800 to 115200.
For some boards, such as some variants of the NodeMCU board, you’ll need to insert
-fm dio after the flash_size argument.

If the commands run without error, then MicroPython is installed on your board.
The simplest way to check is to try to connect to the REPL in the usual way (for
example, picocom --baud=115200 /dev/ttyUSB0). Here’s an example REPL session
that’ll blink an onboard LED on and off every half second:

>>> from machine import Pin
>>> import time
>>> led = Pin(2, Pin.OUT)
>>> while True:
... led.value(not led.value())
... time.sleep(0.5)
...

Unlike the other devices, the ESP8266-based device probably won’t appear as a USB
flash storage when you plug it into your computer, although this will depend upon
your device. Nevertheless, there is a filesystem available to you, and just like all the
other MicroPython boards, if you put a main.py file onto the filesystem, Micro‐
Python will attempt to run this script on boot.

How do you get access to the on-device filesystem? Through the remarkable WebREP,
a means of connecting your browser to the board via your local WiFi network.

WebREPL provides two features: access to the REPL using a browser-based user
interface, and the ability to upload, download, and delete files on the board’s file‐
system through the browser.

For this to work, the browser-based WebREPL web application will need to be open.
You’ll also need to set up the the board so it accepts websocket connections if you
supply a password.

Developer Setup | 43

The WebREPL web application is conveniently hosted at MicroPython’s own website,
although you could run the application locally from the source code available from
GitHub.

Assuming that you point a modern browser at the web application (the MicroPython
project recommends use of Firefox or Chrome), then you will see something that
looks like Figure 5-2.

Figure 5-2. The WebREPL for connecting to the ESP8266.

Next, configure the password for connecting to your board. To do this, plug the
device into your computer, and connect to MicroPython’s REPL in the usual manner.
Once you see the prompt, import the webrepl_setup module and follow the instruc‐
tions. They’ll look something like this:

>>> import webrepl_setup
WebREPL daemon auto-start status: disabled

Would you like to (E)nable or (D)isable it running on boot?
(Empty line to quit)
> E
To enable WebREPL, you must set password for it
New password: password
Confirm password: password

44 | Chapter 5: ESP8266 / ESP32

http://micropython.org/webrepl/
https://github.com/micropython/webrepl
https://github.com/micropython/webrepl

Changes will be activated after reboot
Would you like to reboot now? (y/n)

When this is done for the first time, you will be asked if you want to reboot the device
so your changes can take effect. Upon restart and if already connected to the REPL,
you will notice a message that says something like, WebREPL daemon started on
ws://192.168.4.1:8266.

Return to your computer and scan for WiFi networks. You will find a new access
point called something like MicroPython-020436. The default password for this net‐
work is micropythoN (note the capital “N”).

Connect to this network.

With the WebREPL having already been loaded before you switched networks, copy
the WebREPL daemon’s URL (the one starting with ws://) into the box at the top left
of the WebREPL application.

Immediately to the right of where you pasted the URL is a “connect” button. Click it,
and a password prompt will appear in the main area of the WebREPL. Use the pass‐
word you entered as part of the webrepl_setup procedure, and you should be greeted
by the familiar chevrons of the Python REPL.

At this point, you will also be able to use the web forms on the righthand side of the
browser application to upload, delete, and get the content of files found on the devi‐
ce’s filesystem.

As will be seen later, it is also possible to configure the board to connect to another
wireless access point. The board remembers this information and will attempt to
reconnect to the last access point it was previously connected to. Once connected, it
will be possible to connect to the WebREPL via the LAN rather than directly to the
device acting as its own access point.

Detailed documentation for the ESP8266 port of MicroPython can be found at
https://docs.micropython.org/en/latest/esp8266/.

ESP32
Because of the relatively new nature of the ESP32-based boards and immature
(although working) MicroPython implementation for them, the flashing of firmware
is rather more involved. The end result is (currently) stable but undergoing revisions.
It is for this reason that I will not use ESP32-based boards in the rest of the book.
However, the ESP32’s API is designed to work just like the ESP8266’s, so the examples
in this book should work on the ESP32 without any modification.

Nevertheless, for those of you who feel brave and who want to live at the bleeding
edge, I’ve included the following pointers. I deliberately use the word “pointers” since

Developer Setup | 45

https://docs.micropython.org/en/latest/esp8266/

the current relatively complicated series of steps to get MicroPython running on a
board will certainly become much simpler in a very short period of time.

You have been warned!

Those of you who have not skipped this section, well done; you are going to have
some fun compiling the firmware yourself. To do this, clone the code from the ESP32
port of MicroPython. The most up-to-date compilation instructions are contained
within the README.md file in the repository’s esp32 subdirectory.

To build the firmware, you need to install the cross-compiler that targets the type of
CPU found on the ESP32 (Xtensa) and download the Espressif IDF (IoT Develop‐
ment Framework) that MicroPython uses to work with the board. The instructions
for how to do this are found in the esp-idf repository on Github. You only need to
complete the first two steps in Espressif ’s instructions to meet MicroPython’s require‐
memts.

Because Espressif ’s own code base is also undergoing changes, it is important you
have a version that works with MicroPython. If you look in the Makefile in Micro‐
Python’s esp32 subdirectory, you will find a line that specifies the ESPIDF_SUPHASH.
Copy the referenced hash and reset the Espressif IDF repository to the required ver‐
sion with the following command:

$ git checkout <Current value of ESPIDF_SUPHASH>

If this step is forgotten and a version of the Espressif IDF that is not compatible with
MicroPython is used, you’ll get a warning when you try to build the code.

The final step for meeting requirements is setting the ESPIDF environment variable to
point to the root of the Espressif IDF repository. The MicroPython documentation
recommends creating a new file in the esp32 directory called makefile (or GNUmake
file if your filesystem is case insensitive) containing the following:

ESPIDF = path-to-espressif-idf-repository
PORT = /dev/ttyUSB0
FLASH_MODE = qio
FLASH_SIZE = 4MB
#CROSS_COMPILE = xtensa-esp32-elf-

include Makefile

Replace path-to-espressif-idf-repository with the correct path to the repository.
Use $(HOME) rather than a tilde if you need to reference your home directory. Make
sure the PORT value points to the port connecting your computer to the ESP32 device
and be aware that sometimes the setting for FLASH_MODE needs to be dio rather than
qio. If you didn’t add the Xtensa cross-compiler to your path, use the CROSS_COMPILE
setting to set its location.

46 | Chapter 5: ESP8266 / ESP32

https://github.com/micropython/micropython-esp32
https://github.com/micropython/micropython-esp32
https://github.com/espressif/esp-idf

With the requirements met, there are two further steps to build MicroPython. The
first is to pre-compile some of the built-in scripts to bytecode with the following
command executed in the root of the MicroPython repository:

$ make -C mpy-cross

The second step requires that you navigate into the esp32 directory and run make:

$ cd esp32
$ make

At last, you will find a firmware image in the build directory. Make sure your ESP32
is in bootloader mode (check with your manufacturer’s documentation to see how
this is done if it’s not done automatically) and ensure that the port and flash settings
are correct in the makefile just described.

Start by erasing the flash completely:

$ make erase

Then flash MicroPython with the following:

$ make deploy

Once finished, connect to MicroPython’s REPL in exactly the same way as the other
devices. But please remember, this is a relatively new microcontroller and brand-new
port of MicroPython, so this is a work in progress, and not everything will be avail‐
able.

This completes a quick tour of the devices that will be used in this book.

Before diving into code, I want to use the next chapter to pause and reflect upon how
one might think about, explore and solve problems with embedded devices that run
MicroPython.

Developer Setup | 47

1 Taken from the publisher’s back-cover blurb for David Rose’s book, Enchanted Objects. As we shall see, the
book is excellent and much better than the blurb suggests. Never judge a book by its cover!

CHAPTER 6

Thinking Embedded

This chapter helps you think about generating embedded solutions to real-world
problems.

Why is this important?

While microcontroller-based devices have been around for a long time, it is only
recently that they have received broad attention due to the hype surrounding the
Internet of Things (IoT). Many people have become interested in the opportunities
available in this field, especially given some of the bombastic language in the media.
Apparently, we are “standing at the precipice of the next transformative development,
a world in which innovation becomes more human”, and where “technology will be
embedded in hundreds of everyday objects we already use—our cars, wallets,
watches, umbrellas, even our trash cans.”1

The antidote to such tiresome hype is reflective, grounded, and critical thinking. Such
an outlook is essential for identifying and evaluating opportunities to solve important
problems with genuinely useful embedded solutions.

In The Hitchhiker’s Guide to the Galaxy series of books, Douglas Adams beautifully
lampoons what happens in the absence of such thinking. He describes the Sirius
Cybernetics Corporation (who manufacture all manner of everyday objects contain‐
ing “advanced technology”) in the following way:

49

It is very easy to be blinded to the essential uselessness of [their products] by the sense of ach‐
ievement you get from getting them to work at all. In other words—and this is the rock solid
principle on which the whole of the Corporation’s Galaxy-wide success is founded—their fun‐
damental design flaws are completely hidden by their superficial design flaws.

—Douglas Adams, So Long, and Thanks for All the Fish

Such misapplication of inept technology is a recurring theme for Adams. For exam‐
ple, doors with built-in personalities not only open and close, but thank people for
using them and “sigh with the satisfaction of a job well done”. They are universally
loathed by the other characters in the book.

The absence of critical thinking and a blind enthusiasm for technical solutions (for
the sake of technical solutions) is evidence of a complete lack of sympathy for the
needs of others. Worse still, it pollutes our world with annoying, incomprehensible
and often useless gizmos.

I believe a far better approach to project development is to put yourself in another’s
shoes or, at the very least, listen to people and help them to adapt technology to their
own needs. After all, are you sure you know exactly what others want or need? Only
by listening, reflecting, evaluating, and experimenting is such valuable knowledge
revealed. Only then will you know what important problems to solve.

What does this entail?

Celebrate difference and diversity because it exercises our capacity for empathy and
understanding of others’ lives, problems, and interests. Admit, evaluate, and learn
from mistakes, for how else are you going to adapt to change or the revelations of
new information? Keep an open mind; after all, who wants to be a prejudiced bigot
who can’t see a solution because of misinformed blind spots? Look outwards, because
progress is only made through fearless exploration.

How does this relate to MicroPython?

MicroPython makes it easy to iterate, adapt, and change things, since Python pro‐
motes dynamic, simple, and clear code. It gives you the flexibility to experiment, eval‐
uate and enhance your embedded project faster. Furthermore, the wider Python
community is a diverse bunch who value the aforementioned attributes so necessary
to avoid becoming like the designers at Sirius Cybernetics.

If your project is bespoke to your own very specific need, these attributes still apply.
While you may know what you want, expanding your horizons to explore how others
have solved similar problems is both a useful and fun activity.

A large part of MicroPython’s rise and popularity is because it is an amazing feat of
embedded engineering, and Python, as a language, has great features. But Micro‐
Python’s rise and popularity is also because its technical attributes promote an agile
and user-focused way of embedded development.

50 | Chapter 6: Thinking Embedded

As discussed in the introduction, MicroPython also empowers three groups of people
with new opportunities:

1. Python programmers transfer their experience, skills, and expertise to embedded
devices, giving them a way to take part in the microcontroller/IoT movement,

2. Embedded developers enjoy the benefits of MicroPython as a platform for easy,
simple, and rapid development,

3. Beginner programmers get an easy-to-use and compelling platform for learning
about programming.

Such opportunities mean there are large numbers of people who are either unfamiliar
with embedded devices, unfamiliar with Python, or unfamiliar with both. In all cases,
many are left wondering what to build with MicroPython and the devices it supports.

For example, if you’re a Python developer familiar with Django and web develop‐
ment, you already have the experience and technical skills needed to imagine and
implement new web-based projects and opportunities. Similarly, in order to use
MicroPython, you will need to develop an appreciation of the value and application
of embedded devices. Eventually, you will intuitively see opportunities for solving
problems by enhancing physical objects with programmable embedded devices, in
the same way you perhaps already do in the context of the web.

Alternatively, if you are an embedded developer who already understands the capabil‐
ities of microcontroller-based devices, you will still need to learn how MicroPython
quickly facilitates a working solution. You may be surprised by how expressive
Python is compared to other programming languages commonly used for embedded
development. You will also encounter the capacity of the existing global Python com‐
munity to generate useful free software solutions and the necessary momentum to
support them.

As a beginner programmer you will discover that Python is easy to learn; that the
community is very supportive of new programmers; and that microcontroller-based
devices give ample opportunities for fun, educational projects.

The fundamental questions to ask are:

• What problems can I solve?
• How can I solve them with MicroPython?
• Are embedded devices the best solution for such problems?

This chapter helps you answer the first question. Given the technical capabilities at
your disposal, it will help you imagine valuable solutions, think about problems relat‐
ing to how users react to and interact with embedded devices, and understand how
they may use such devices to improve their lives.

Thinking Embedded | 51

The remaining chapters of the book will deal with the practicalities of the second
question.

Only time will reveal the answer to the third question. Crucially, this can only happen
if we exhibit reflective, grounded and critical thinking and try, experiment and learn
from our mistakes in order to adjust and improve our embedded projects. A process
for which MicroPython is well suited.

The remainder of this chapter explores a framework to help you generate, evaluate
and evolve valuable embedded projects. It uses the work of MIT’s David Rose
described in his book, Enchanted Objects. Rose’s work helps to reveal potential blind
spots for further investigation. It ensures habitual thinking (the result of our tacit
privilege, prejudices and assumptions) is challenged. Even if one does not agree with
details of Rose’s approach, it is the process of reading and evaluating his work that is a
useful tool to prompt analysis, reflection and imagination and avoid Sirius Cybernet‐
ics syndrome.

In the dedication of his book, Rose states that, “a more humane interface between
technology and people is in your hands”.

To identify what this means, he creates three lists of concepts that help one imagine,
explore and assess ways in which embedded devices could be used. These lists are
framed within the concept of “enchanted objects” that help one draw inspiration from
magic, legends and fairy tales in which everyday things take on extraordinary proper‐
ties. This re-framing of embedded development puts the focus on what the objects
do, the capabilities they facilitate and how they solve people’s problems. I particularly
like how he emphasizes the contrast between the dynamic, liberating and imaginative
outlook afforded by such thinking with the mass produced, impersonal and trite elec‐
trical gadgets so widely in use today.

The three lists address:

• human drives
• abilities of enchantment
• steps to enchantment

Be critical when evaluating these lists and try to work out how they apply to problems
and opportunities in your users’ lives.

Consideration of the lists will prompt insights for future projects using MicroPython
and the devices described in the remainder of this book.

What will you build?

52 | Chapter 6: Thinking Embedded

2 Rose intentionally names concepts with a language that suggests folk lore, magic and the supernatural to
prompt us to use our imaginations and consider “stuff ” that isn’t a manufactured opaque black plastic gizmo.

Human Drives
This list identifies six human drives that Rose believes are fundamental and universal:
omniscience, telepathy, safekeeping, immortality, teleportation, and expression.2

Such drives are important because they provide clues to what makes a product, tool
or device resonate with its users. They also categorize the sorts of broad problem
domains you may wish to address, allowing you to learn from other efforts in the
same context. As you read the descriptions of the items on this list, try to imagine
how these drives manifest themselves in your life and consider how they are
enhanced or confounded when you use an object, tool or device.

Omniscience
Omniscience is knowing everything.

People want to know about many different things from physics to the private
lives of celebrities. Furthermore, people enjoy being the person who knows that
special piece of valuable information because it gives them status. As Francis
Bacon said, “knowledge is power”.

There are already objects that allow for the accumulation or delivery of knowl‐
edge. Objects, such as the barometer, forecast the weather and an ambient orb
can be programmed to indicate stock market conditions through colourful dis‐
plays of light.

Rose mentions literary devices such as the alethiometer from Philip Pullman’s
trilogy, His Dark Materials (Yearling). This fictional object has the power to
always reveal the truth.

Is this fiction so far fetched?

Try asking Amazon’s Alexa, “what is the circumference of the sun in centime‐
ters?”

Perhaps it’s not so far fetched after all.

Ask yourself or your potential users to identify the nugget of information that’s
always needed at a glance? How would this information manifest itself in an
object?

Telepathy
Telepathy is communicating our thoughts, feelings and status to others.

Human Drives | 53

As the explosion of social media over the past decade has shown, people like
sharing what they’re up to, how they feel and their experiences and opinions with
the rest of the internet. Some just crave attention.

Such interactions have the potential to widen or reinforce our social lives and
promote a sense of community. It’s how we collaborate with allies or encounter
those who hold differing opinions. It allows us to broaden our view of the world.

Objects that make this possible include smart watches that connect to Twitter,
mobile phones through which we have access to social media and voice commu‐
nication and conference call devices built into meeting rooms. A fictional exam‐
ple is the Weasley clock from the Harry Potter books that keeps track of the status
of members of the Weasley family (each member of the family is represented by a
hand pointing towards a particular state, for example, sleeping, at work or lost).

Again, is this fiction so far fetched? Consider the many presence-based apps that
use the GPS capabilities of your phone to advertise where you are and what
you’re up to.

Do you know someone who is absent but whose presence you desire? How might
an object connect you? In what sense are you connected (for example, do you
share your moods, locations or activities)?

Safekeeping
Safekeeping is the desire for protection from harm.

People thrive when they feel safe and at ease. It is a pleasant state and, if you are a
parent or responsible for the care of others, it is an attribute you probably want to
ensure for them.

In a digital sense, we expect the same feeling of safety.

We use devices to protect us from physical harm. For example, parking sensors
warn us of impending contact with another vehicle. For our collective safety,
smart motorways measure the traffic flow and change the speed limit to ensure a
safe and speedy journey.

A literary example of an object that ensures safety is Frodo’s sword “Sting”
described in J.R.R. Tolkien’s Lord of the Rings. It glows when there are Orcs in the
vicinity.

Such benign devices need to collect data about us for them to work. But we also
expect our data to be safe and for us to retain control over how it is shared.

Controversially, CCTV cameras watch our every move for what the authorities
tell us is our own protection. One need look no farther than Orwell’s Nineteen
Eighty-Four to witness this phenomenon in literature.

54 | Chapter 6: Thinking Embedded

Ask yourself, do you know anyone who needs help, care, and attention? What
makes them require such care? Do you know of a vocation that is accident prone
or requires health and safety guidance? What are the parameters for safety, and
how might these be measured or highlighted by objects in the environment?
What sort of data do these objects collect? How might they keep the data safe?

Immortality
Immortality pertains to the desire to lead a long and healthy life in which we can
be autonomous, active, and attentive to the end.

This is perhaps an area where embedded devices are already well established
through the technology used to promote and maintain health.

For example, do you use a Fitbit that tracks your daily activity to give you a
“quantified self ”? Perhaps you know someone with a pacemaker fitted to their
heart. Rose provides the interesting example of a “glowcap”, a device that fits to
the top of medicine containers. It illuminates when the medicine should be taken,
according to the doctor’s directions; and, since it is connected to the internet, will
reorder a prescription when supplies run low.

What aspects of your lifestyle do you want to enhance or diminish in order to
lead a more flourishing life? Can you imagine an object to prompt, track, or dis‐
courage certain behaviours? Are there existing objects already associated with
your health (or that perhaps cause ill health) that could be enhanced with behav‐
iour from an embedded device?

Teleportation
Teleportation pertains to our desire for unconstrained movement.

We no longer live in a society where our world view is limited to our immediate
geographical location. Transport usually involves complicated machines and pro‐
cedures such as driving a car or catching a flight, so is it possible to make travel
easier and perhaps less frustrating?

How could devices help us get to where we need to be?

A real-world innovation in this space are navigation handlebars for cyclists that
glow on the left or right to indicate the direction to turn. Of course, within the
next 10 years we’re likely to see the emergence of self-driving cars, enchanted
objects on wheels that know where you need to be.

Travel is already saturated with technical gizmos. How might such technology be
simplified? What would you improve about a mode of transport, or perhaps even
a transport hub, that made movement, arrival, or departure more bearable? How
might the fabric of transport technology be changed from impersonal, grotty, and
automatic machines to friendly, welcoming, and helpful objects that made travel
a joy?

Human Drives | 55

Expression
Expresion is the need to make ourselves known through different artistic forms
and media.

Objects have always been a part of the creative drive, be they tools for building
things, instruments for performing music, or perhaps the most well-known his‐
toric example of a revolutionary object for expressing yourself—the printing
press.

Today we have enchanted objects like 3D printers that will build anything, from
minute engine parts to a whole house. Devices such as the Guitar Hero controller
allow people to take part in musical activities that would otherwise require years
of training. Lego Mindstorms, the Raspberry Pi, Arduino, and other platforms
beloved by the maker movement allow people to create electronic and program‐
mable projects that would have been impossible until very recently. They are
examples of devices as a new programmable artistic medium.

If you take part in an artistic endeavour, how might your tools or equipment be
enhanced? Could you imagine a way in which a programmable object is a work
of art?

Like me, you may be thinking that many of the examples associated with the human
drives listed are already catered for by apps on the plastic and glass black mirror that
is your smartphone.

I suspect Rose would counter by saying that bland, uniform applications on a mobile
or tablet prevent access to some of the fun, excitement, and ease of use of real-world
objects. The challenge is to figure out how such functionality can be migrated from a
phone to an engaging, useful and valuable enchanted object. In doing so, the fabric of
our world becomes more interesting, intriguing, and alive, rather than diminished
into a device sitting in our pockets.

What would make such a world interesting, intriguing, and alive? Rose would answer
with the abilities of enchanted objects.

Abilities of Enchantment
The seven abilities identified in this list collectively differentiate enchanted, embed‐
ded objects from other sorts of computing devices (smartphones, tablets, and PCs):
glanceability, gestureability, affordability, wearability, instructibility, usability, and
loveability.

Such attributes influence how we learn to use objects, how they interact with us, and
how they inhabit the wider world. When reading this list, imagine how such abilities
might manifest themselves in devices embedded in objects.

56 | Chapter 6: Thinking Embedded

Fundamentally, these abilities relate to the experience of the user. By this I mean how
attributes of an object affect a person’s ability to use it to their advantage and how
this, in turn, makes the user feel about the object. We’re firmly in the world of
human-computer interaction (HCI) or user experience (UX) for physical objects.

Glanceability
Glanceability helps us to read just enough information to make decisions.

This isn’t a case of a pop-up, alarm, or other digital intrusion into our lives.
Rather, it is bringing information into focus at the most opportune time and
place.

Glanceability means less cognitive load and fewer interruptions, and quicker
information-gathering and decision making. Such glances originate from us: we
choose to look at a device rather than have it demand our attention through
bleeps, vibrations, and visual interruptions.

Examples of glanceability include traffic lights and the hands on a clock face.
People look at such devices when and where they need information. Such infor‐
mation is immediately conveyed via convention: stop at red or go on green.

Embedded devices that have lights, a display, or moving parts can be reconfig‐
ured so their physical properties or their appearance reflect or stand for some
useful piece of simple information. To my British sensibility, objects that are
glanceable feel more polite than attention-grabbing applications that compete for
our attention.

Gestureability
Gestureability means an object senses and responds to our movements.

It may be that an object merely senses our proximity to engage some aspect of
our environment, such as lights or heating. An object may be moved around in
space to control some other object at a distance or respond to a gesture, such as a
shake that represents a negative reaction. Perhaps an object reacts to rhythm in
our movements or simply knows to enter quiet mode because it is face down.

All of this contrasts with typing on keyboards, poking and prodding touch-
sensitive screens, or tediously dragging a mouse across a desk to point at visual
metaphors such as a “button”, “window”, or “trash”.

I wonder about the expressive potential of such capabilities. In the nondigital
world, a violin translates and amplifies the movements of its player into music
capable of profound emotional effect. It does this as a reaction to the highly prac‐
ticed physical movements of the player’s fingers and arms. Can you imagine a
digital equivalent capable of similar expressive nuance?

Abilities of Enchantment | 57

3 Created by the talented Mr.Daniel Pope, for a fancy dress party. See: https://www.youtube.com/watch?
v=UZr3oO5WXJI.

Affordability
Affordability makes embedded devices accessible to all.

Because the micro:bit is so cheap, it doesn’t matter if a beginner programmer
breaks it: affordability reduces risk.

Prototyping and development become less expensive, meaning more people can
have a go. The falling cost of embedded devices, such as those upon which
MicroPython runs, means there is more opportunity for bespoke, one-off
projects whereby people create devices for their own particular niche.

Furthermore, the functionality required by most enchanted, embedded devices
does not need the latest or fastest chips, video cards, or monitors. Such devices
are within the price range of most people because their components are extraor‐
dinarily cheap.

Ultimately, affordability facilitates equality of opportunity.

Wearability
Wearability is a way to liberate technology from beige boxes and black tablets to
stuff that is around and even on us.

Much to the joy of its attendees, the Electromagnetic Field Camp (a community-
organised maker conference in the UK) created conference badges that had an
embedded display, WiFi, buttons, and the ability to run MicroPython. Never has
a badge been so popular as attendees hacked together all sorts of previously
unimagined uses for a conference badge.

At yet another recent UK-based Python conference, children eviscerated and
then sewed back together cuddly toys, pendants, and micro:bits in order to make
a programmable cyber-Teddy.

Many have taken microcontrollers and strips of NeoPixel LEDs to create cos‐
tumes, hats, jewellery, and clothes that convey information (such as how “exci‐
ted” the wearer is by measuring their heartbeat) or simply to look cool (such as
the Knight Rider NeoPixel t-shirt3). Interactive clothing not only looks interest‐
ing, but can be useful as a new means of working with, placing, and controlling
technology.

Indestructibility
Indestructibility means embedded devices can last a long time.

This is in contrast to the latest $700 smartphone whose screen will often crack
and which will be obsolete in terms of software within a couple of years.

58 | Chapter 6: Thinking Embedded

https://www.youtube.com/watch?v=UZr3oO5WXJI
https://www.youtube.com/watch?v=UZr3oO5WXJI
https://www.emfcamp.org/

4 Gradus ad Parnassum means “steps to Parnassus”. Parnassus is a mountain in Greece that has a peak sacred to
Apollo and the muses (the ancient Greek deities of the arts, sciences, and knowledge). As a title, it has histori‐
cally been applied to guides in which one progresses to mastery through discrete steps.

My local museum uses cheap embedded devices to run its push-button display
cabinets, and they still work after a decade or more of constant use by the general
public. By attaching an embedded device to a more robust everyday object, the
electrical components have an extended lifetime.

Usability
Usability is how the shape, look, feel, and context of a device make its use self evi‐
dent.

We all know how to sit in a chair, so could a chair become a user interface? If you
have a bad back, why not embed a device that times how long you have been sit‐
ting? It could (glanceably) indicate when to stretch.

This is a classic example of how to repurpose everyday objects by enchanting
them. In this way, technology draws upon the history, traditions, and familiarity
associated with objects already found within our lives.

Loveability
Loveability is demonstrated by an emotional attachment to an enchanted object.

Perhaps the chair you modified to help manage your bad back originally
belonged to Grandma, and, in turn, perhaps your modification will be cherished
by your descendants as another aspect of the story of a family heirloom.

A device can also achieve loveability by looking friendly through anthropomor‐
phic design or maybe because you simply appreciate its elegance in both form
and function. In contrast, it’s hard to become attached to a plastic and metal
black mirror phone: while it is capable of doing many things, you know you’ll get
the same apps when you upgrade to the latest model.

The qualities described do not mean that objects containing embedded devices will be
useful. It is quite possible to build something that suffers from the same inhuman,
impersonal, and manufactured qualities that inhabit the many consumer electronics
with which we are already familiar. As an alternative, Rose is encouraging us to step
away from such mass-produced uniformity and, in its place, design embedded objects
with personality, flair, and character. Thinking about the qualities enumerated will, he
claims, help us make compelling stuff that resonates with people and intrigues users.
Only then will devices become fun to use.

How should one go about addressing the human drives and enchanted qualities
described? Rose has another list that enumerates the steps on the ladder to enchant‐
ment: a latter-day gradus ad Parnassum.4

Abilities of Enchantment | 59

Steps on the Ladder of Enchantment
What is the process of making an embedded object appear enchanted? Rose claims to
have identified five repeatable steps on a “ladder of enchantment” that help bring
forth objects and devices that meet the human drives and exhibit the enchanted qual‐
ities described. These steps are connection, personalization, socialization, gamifica‐
tion, and story-ification.

Their purpose is to act as a springboard for asking questions about how a device
should function.

At the very least, Rose claims, climbing these steps will help you ask the right sort of
questions as one progresses through an embedded project. Such steps are on a meta‐
phorical ladder: the higher up the ladder one goes, the more sophisticated or enchan‐
ted the object is. He also makes it clear that not every object need reach the top step.

Connection
Connection means adding sensing capabilities to an object.

It may use such readings as triggers to signal information or store data away for
later analysis. Such objects may also be connected to the internet and enhance
their capabilities by offloading computation and data-storage to the remote com‐
puters “in the cloud”.

How could such sensing, processing, and connecting capabilities enhance the
mundane tools or devices we use in everyday situations? What important infor‐
mation do we require? How is this to be gathered? What happens to the collected
data?

Personalization
Personalization means reacting to context.

Given the collection of data in the previous step, how could this be used to make
the device work better? Could an object learn from and about its context or envi‐
ronment so that it modifies and improves its behaviour? What needs to be meas‐
ured? What aspect of the device should change? How should the change relate to
the detected context?

Socialization
Socialization means adding connections to wider society: friends, family, and col‐
leagues.

It may also mean connecting objects to make a useful or valuable function an
ensemble effort. For example, the ringing of an enchanted dinner gong may
involve reaching out to your family and the devices on or near them.

60 | Chapter 6: Thinking Embedded

5 Clippy was a digital assistant built into versions of Microsoft Office in the late 1990s. It took the form of a
panglossian paper clip. At inopportune moments Clippy would pop up to cheerfully interrupt your workflow
with helpful suggestions like, “It looks like you’re trying to write a letter, would you like me to...” (followed by
a list of obvious or unhelpful outcomes). Like the doors with built-in personalities from The Hitchhiker’s
Guide to the Galaxy, Clippy was universally mocked and loathed.

What do you wish to signal and to whom? How are objects used to trigger such
signals? How do you indicate recipients? Is it possible to modify the signal with
extra information? How is the signal brought to the attention of recipients? How
do you ensure the privacy of such communication?

Gamification
Gamification means adding fun, motivation, and the occasional nudge to the
behaviour of a device.

The aim is to help people become active users and participants in the full capabil‐
ities of an object. This could be achieved with tropes found in video games (a
scoring system, achievements, and so on), although sensitivity and respect should
be involved to ensure the device does not behave inappropriately. Think of the
enforced “help” that Clippy attempted to bring to Microsoft Word.5

Is the object supposed to be fun to use? If so, how? If not, why not? What aspects
of the device need effort from the user? Does this require you to nudge users to
activate and learn such functionality? When and how should you nudge? What
does the object do to help overcome potential user frustrations?

Story-ification
Story-ification is adding a narrative that sets the object in a meaningful context.

In a sense, objects could become characters in the stories of their users’ lives by
providing meaningful interactions. Alternatively, the object itself may come with
a back story that makes it interesting and unique.

To understand how powerful a story can be, just look at how children weave
objects into their play: that stack of Lego bricks is really a rocket ready to take
them to Mars, or the stick found in the park is a magic wand that only works on
grandparents.

This also applies to how objects relate to important narratives in the real world.
Only people with an employee card get into the office (excluding people who
don’t have an object), “with this ring, I thee wed” (binding people together
through an object), and only police officers carry a badge (an object that estab‐
lishes status). Such stories about objects give our world meaning.

Steps on the Ladder of Enchantment | 61

Does the enchanted object exist within a narrative? How is this exhibited in the
way the object behaves? Is it obvious what the story is? How do people learn or
make up the story related to the device?

David Rose’s stated aim was to give people a way to develop fresh ideas for creating
embedded devices that engaged people in a more humane way than terminals, GUIs,
or touchscreens. Such enchanted objects that contain relatively simple embedded
devices are not an end in themselves. Rather, their usefulness comes from their ability
to sense, adapt, connect, motivate, and tell a story as an object that solves a problem,
creates value, provides opportunities, or empowers its users.

What do you need to know about embedded devices and MicroPython to create such
things? That is what the rest of the book will explore.

62 | Chapter 6: Thinking Embedded

1 Fake-German for blinking lights, such as LEDs, that may indicate some sort of status. The original term first
appeared as a mangled set of mock-German instructions found on a 1950s-era sign in an IBM computer lab.
The sign ended with, “RELAXEN UND WATSCHEN DER BLINKENLICHTEN”. Interestingly, the German
Chaos Computer Club created project blinkenlights, which turned the windows of a high-rise block in central
Berlin into a monochrome display in which the blinking lights, one in each window of the building, displayed
animations and messages.

CHAPTER 7

Visual Feedback

One of the most deeply rewarding aspects of programming is making the computer
appear to do something; be it blinking an LED, printing “Hello, World!”, displaying a
picture, or creating an animation, there’s something satisfying in making such output
visible to the world.

Blinkenlights
Blinkenlights1 are the embedded world’s version of "Hello, World!". If it’s possible
to make an onboard LED blink on and off, then you have probably got everything set
up correctly (as demonstrated in the earlier chapters of this book).

This activity might at first appear boring, since an LED’s purpose is either to be deco‐
rative or indicative of state. Crucially, familiarity with such an innocuous component
provides an interesting route into MicroPython’s modus operandi. It demonstrates
how MicroPython is both similar and very different to “normal” Python. This jour‐
ney of discovery starts with the LED itself.

Light emitting diodes (LEDs) come in many colours and all work in the same way.
From the perspective of physics, an electrical current of a suitable voltage is applied
causing the occurrence of electroluminescence. In the case of an LED, a semiconduc‐
tor material emits light in response to the electrical current. The colour of light is

63

http://blinkenlights.net/

determined by the energy of the released photons. This, in turn, is determined by
properties of the electroluminsecent semiconductor. Different semiconductor materi‐
als have different properties and thus produce different colours. The amount of
energy applied to the LED changes its brightness.

The microcontrollers upon which MicroPython runs have pins that can accept input
from or provide output to external components in the form of a voltage, which in
turn provides an electrical current. The LEDs built into a device, or the LEDs connec‐
ted via externally available GPIO pins, are managed by MicroPython controlling the
flow of electrical current to the pins attached to the LED.

MicroPython runs on the “bare metal”. This means MicroPython is the broker
between our Pythonic view of the world and the hardware connected to the micro‐
processor.

As your Python code executes, MicroPython directly controls the physical aspects of
the device by applying or detecting a voltage (and hence electrical current) on the
microcontroller’s pins.

Microcontrollers are relatively simple and don’t need to run a complicated operating
system kernel like Linux. There is no operating system because MicroPython is the
operating system. The pins and hardware-related protocols used to run peripherals
attached to the microcontroller are available as Python-based APIs (such as the pyb,
microbit, digitalio, and machine modules used to blink the LEDs in the previous
chapters and to be explored throughout the rest of this book).

To give a flavour of how this relates to our humble LED, let us examine how it is pos‐
sible to change the amount of power sent to an LED, thus adjusting its brightness.

Since programming means working in the digital world of “on” and “off ”, there is no
notion of “in between”. For example, we cannot turn on the LED at only 50% of full
brightness. Instead, we change the brightness of an LED using a technique called
pulse width modulation (PWM). This important concept is one way to make some‐
thing appear analog (where there is a graduation of possible values, such as varying
degrees of brightness) when the underlying implementation is digital (there are only
two possible values: “on” and “off ”). This is achieved by switching the voltage of a pin
on and off very quickly whilst also controlling the length of time that the voltage is on
or off.

Figure 7-1 demonstrates what I mean.

64 | Chapter 7: Visual Feedback

Figure 7-1. Three different PWM signals.

The three signals have the same period (frequency), but they have different duty
cycles, the amount of time in one period when the signal is on. Because power is only
applied when the duty cycle is on, the average power delivered to the device is the
duty cycle ratio multiplied by the “on” power.

For example, imagine the signals were “on” at 3.3 volts and “off ” at zero volts. The
first signal is on only 50% of the time, so the total energy of the signal is half that of a
fully “on” signal. This has the equivalent effect of outputting an average of 1.65 volts
instead of 3.3 volts. The second signal has a 25% duty cycle, as if an average of 0.825
volts were output. The third signal has a 75% duty cycle, three times as much energy
as the second signal and therefore equivalent to an average output of 2.475 volts.

Peripherals that benefit from PWM tend to have a slow reaction time to the input sig‐
nal. Because of their slow reaction time, they appear to operate smoothly, even
though power is applied to them in pulses rather than continuously.

Unfortunately, LEDs are fast reacting. The LED blinks as a result of power applied
during the duty cycle of the PWM signal. However, the human eye is too slow to
notice that the LED is blinking. The LED simply appears constantly illuminated
because it blinks faster than the human eye can detect. Since the average voltage of a
PWM signal relates to the amount of light emitted, the brightness of the LED appears
to change.

Therefore, the smoothing out of pulses into a seemingly continuous analog signal is
the result of either a relatively slow-reacting peripheral that can’t display a discernible
reaction to individual pulses, or a slow-reacting observer of a fast-reacting peripheral,
such as an eye observing an LED.

As we shall discover in later chapters, PWM works well for controlling motors and
can be used to generate sound waves.

Blinkenlights | 65

Not all devices or LEDs work with PWM. The following example, using the REPL on
the PyBoard, illustrates the simple on/off activity of the device’s red LED:

>>> red = pyb.LED(1)
>>> red.on()
>>> red.off()
>>> red.toggle()

The red LED on the PyBoard is labelled as 1, with the green labelled 2, amber as 3,
and blue as 4. The red and green LEDs can only be on or off. However, the amber and
blue LEDs are capable of using PWM to change the intensity of their brightness, like
this:

>>> blue = pyb.LED(4)
>>> i = 0
>>> while True:
... pyb.delay(5)
... i += 1
... if i > 255:
... i = 0
... blue.intensity(i)
...

Notice how the pyb.delay function is used to pause the script for 5 milliseconds so
the gradual changes in brightness do not occur too quickly for the human eye to see
them fluctuate. Valid intensity levels (represented by the object i) are between 0 (full
off) and 255 (full on). Once the intensity of brightness is higher than the maximum
value, it is reset to 0.

On the micro:bit, brightness is simplified to only a few levels of possible intensity.
Each of the LEDs in the display matrix can be set to a value between 0 (off) to 9
(brightest).

The brightness of the red LED on the Circuit Playground Express is also controllable
via PWM. The API to do this in CircuitPython makes explicit reference to PWM ter‐
minology. The following example illustrates what I mean:

>>> from board import D13
>>> import time
>>> import pulseio
>>> pin = pulseio.PWMOut(D13)
>>> while True:
... for i in range(16):
... pin.duty_cycle = 2 ** i
... time.sleep(0.1)
...

The pin to which the LED is connected is represented by the D13 object imported
from the board module. Python’s standard time module is imported for later use to
introduce a pause in the program so that the gradual changes in brightness don’t hap‐

66 | Chapter 7: Visual Feedback

pen too quickly. However, the pulseio module is most interesting because it contains
the PWMOut class. By instantiating the class with the reference to the pin, a pin object
is created. The duty_cycle attribute (note the correct use of terminology here!) can
be any value between 0 and 65,536 (i.e., a 16-bit resolution). As the value of the duty
cycle is increased, so is the LED’s brightness.

Unfortunately, the LEDs on the ESP8266/32 are digital (on/off) only.

While the Circuit Playground Express has an LED that can blink, it also has a secret
weapon when it comes to lights.

NeoPixels (Blinkenlights on Steroids)
NeoPixels are multicolour LEDs.

Whereas the LEDs discussed in the previous section only display light in a specific
and unchanging colour, NeoPixels can emit more than 16 million different colours.

All the boards discussed in this book are capable of working with NeoPixels, but only
Adafruit’s Circuit Playground Express has them built in. For the other boards, you
will need to purchase rings, strips, boards, and sticks of NeoPixels and connect them
to the GPIO pins as per the peripheral’s instructions. In any case, the neopixel mod‐
ule you will use in MicroPython works in roughly the same way on each device.

Each NeoPixel is actually three LEDs and a driver chip combined into a very small
form factor. Each of the constituent LEDs emits only one colour of light, either red,
green, or blue. By controlling the intensity of the individually coloured constituent
LEDs, it is possible to mix the colours into one of over 16 million possible combina‐
tions (see Figure 7-2).

Figure 7-2. A strip of NeoPixels. Also available as rings, flexible boards, and sticks.

NeoPixels (Blinkenlights on Steroids) | 67

2 References to all the pins on a CircuitPython device are always found in the board module. We cover how to
reference pins on all the devices covered in this book in Chapter 9 (although you’ll see examples of pin refer‐
ences prior to that chapter). For example, on a micro:bit you may use pin0 found in the microbit module.

3 Under the hood, this is implemented by the __getitem__ and __setitem__ special methods.

The results are spectacular and give most Christmas trees a good run for their money.

NeoPixels are also fun when you think about the signalling potential of the Circuit
Playground device or the various rings, sticks, and boards of NeoPixels that could be
attached to the other devices. If something has gone wrong, flash red for danger; if it’s
getting cold, turn blue; if something’s confusing, blink lots of different colours. The
possibilities are only bounded by your imagination, and NeoPixels certainly inspire
creative use of light.

The neopixel module (found in CircuitPython’s bundle of useful libraries, men‐
tioned earlier) provides a single class called NeoPixel. An instance of this class is used
to drive the physical NeoPixels. In order to instantiate the NeoPixel class, you will
need a reference to the pin object representing the pin to which the DIN connection
to the NeoPixels is connected along with an indication of the number of NeoPixels
connected via the referenced pin. On the Circuit Playground Express, the code looks
like this:

import neopixel
from board import NEOPIXEL

np = neopixel.NeoPixel(NEOPIXEL, 10)

In this fragment, the np object is created from the NeoPixel class. A reference to the
pin for the NeoPixels is found in the board module2 (it’s helpfully called NEOPIXEL)
and we already know there are 10 NeoPixels available for us to use on the Circuit
Playground Express, hence the value of the second argument.

This demonstrates one of the most common ways in which MicroPython allows you
to interact with attached hardware: instantiate a class representing the high-level
functionality of the attached peripheral. Methods on the resulting object abstract
away the low-level implementation details and allow you to concentrate on the useful
behaviour of the device. Low-level attributes are set at instantiation, such as refer‐
ences to the pins to which the peripheral is connected.

In the preceding example, the resulting np object is an addressable container: it acts
like a list and allows you to get and set individual pixels using the square brackets of
subscription notation.3 In this way it’s possible to reference individual NeoPixels by
position and get or set their associated red, green, and blue (RGB) values, as the fol‐
lowing REPL session (based on the earlier code fragment) demonstrates:

68 | Chapter 7: Visual Feedback

4 This isn’t supported in the micro:bit version of the neopixel module.

>>> import neopixel
>>> from board import NEOPIXEL
>>> np = neopixel.NeoPixel(NEOPIXEL, 10, auto_write=False)
>>> np[0]
(0, 0, 0)
>>> np[0] = (32, 0, 32)

The colour of a NeoPixel is represented by a tuple containing three integers that must
be in the range of 0 to 255. They represent the intensity of the RGB light emitted by
the referenced NeoPixel. In the previous example, immediately after instantiation of
the np object, we read that the first NeoPixel (in position 0) is not emitting any light,
represented by the tuple (0, 0, 0). The next line updates the value associated with
the same NeoPixel to a tuple where the intensity of red and blue light is set to 32.
(The order of the numbers in the tuple is always red, green, blue.)

If you are following along with your own device, you’re probably wondering why you
can’t see a purple glow from the NeoPixel in position zero. It’s because we instantiated
the NeoPixel class with the auto_write flag as False. The Adafruit version of the
neopixel module automatically updates the state of the physical neopixels as you
make changes in code. All other implementations of the neopixel module require you
to explicitly call the write or show method for your changes to take effect on the
hardware. For the sake of consistency between implementations, I’m making the Ada‐
fruit version of the module behave like the others in the following code examples.

>>> np.write()

The write method was renamed to show in the micro:bit imple‐
mentation of the neopixel module, since it was felt this would
make it easier for children to understand what was going on. The
write method is an alias of show in the Adafruit version of the
module for exactly the same reasons whilst also retaining back‐
wards compatibility.

If you need to act upon all the NeoPixels at the same time, there is a convenience
method called fill that takes a single tuple and applies it to all the NeoPixels at
once:4

>>> np.fill((0, 32, 32)) # Turn all NeoPixels to cyan
>>> np.write()

This is also useful if you need to switch off all the NeoPixels:

>>> np.fill((0, 0, 0))
>>> np.write()

NeoPixels (Blinkenlights on Steroids) | 69

Given such a simple yet spectacularly colourful API, it’s fun to combine NeoPixels
with a program loop so the device appears alive:

import neopixel
import random
import time
from board import NEOPIXEL

np = neopixel.NeoPixel(NEOPIXEL, 10, auto_write=False)
step = 32

while True:
 for i in range(10):
 for j in range(10):
 np[j] = tuple((max(0, val - step) for val in np[j]))
 r = random.randint(0, 255)
 g = random.randint(0, 255)
 b = random.randint(0, 255)
 np[i] = (r, g, b)
 np.write()
 time.sleep(0.05)

This fragment cycles around the available NeoPixels and, for the next available Neo‐
Pixel, selects a random colour whilst dimming the intensity of any active NeoPixels
by a step of 32. The effect is a randomly coloured circular disco light. Change the
value passed to time.sleep to change the speed of the effect. Alternatively, change
the value of step to control how quickly the NeoPixels dim (this will also influence
the length of the “tail” of the circular movement around the display).

It demonstrates how easy it is to create colourfully decorative or informative devices
(flash red for danger!).

Another way to visually communicate information is through words and pictures,
and two of our target devices make this very easy.

Text, Images, and Animation
The micro:bit has a limited but remarkably flexible display consisting of a 5 x 5
matrix of red LEDs. As mentioned earlier, these LEDs can be in one of 10 possible
settings numbered from 0 (no light) to 9 (brightest). The lower-level PWM used to
change the brightness of the LEDs is hidden from the user: they need only concern
themselves with an abstract notion of brightness levels.

As noted in Chapter 3, the microbit.display object is used to set (and get) the value
of an individual LED “pixel”. However, the display object, in combination with the
microbit.Image class, allows you to create all sorts of interesting effects.

The microbit.display object is also an example of yet another way in which Micro‐
Python exposes hardware: an object is created to represent an unchanging aspect of

70 | Chapter 7: Visual Feedback

5 From now on I assume you’ve included the from microbit import * (or equivalent) line.

the hardware. For example, every micro:bit will always have an LED matrix. Rather
than instantiating a class each time you need to work with the display, as a conve‐
nience, MicroPython provides a useful object to represent the display. All interactions
with the display therefore happen via methods belonging to the built-in micro
bit.display object.

Perhaps the most immediately interesting feature is scrolling textual output:

from microbit import display, Image

display.scroll("Hello, World!")

You get plenty of options with the display.scroll method: it’s possible to change all
sorts of aspects of the output. Pass the delay parameter to control the number of
milliseconds between each update of the display. This controls how fast the text
scrolls. The boolean wait parameter (whose default value is True) indicates if the
code should block until the scrolling has finished. If the loop parameter is True,
scrolling will repeat forever. Finally, if the monospace parameter is True, the charac‐
ters will take up 5 pixel-columns in width; otherwise, there will be exactly one blank
pixel column between each character as they scroll.

For example, the following fragment5 demonstrates how to make a monospaced mes‐
sage continually scroll quickly while the device is able to get on with other things:

display.scroll("Hello!", delay=80, wait=False, loop=True, monospace=True)

If you want the characters to display one after the other, rather than scrolling, use the
show method instead:

display.show("Danger!")

Apart from the inapplicable monospace parameter, the show method understands all
the same parameters as the scroll method. Furthermore, it understands the clear
parameter, which if True, clears the display after the animation has completed.

But it’s not just characters that can be displayed. The micro:bit has an Image class that
makes it very simple to create pictures and make use of a large number of pre-built
images (see Figure 7-3). For example, here’s how to display a happy face:

display.show(Image.HAPPY)

Text, Images, and Animation | 71

Figure 7-3. A happy looking micro:bit.

There are 65 built-in images: the uppercase attributes of the Image class. They are all
listed in the documentation, although you could discover them all from the REPL by
using the dir(Image) command. How do we know these pictures appeal to a young
beginner coder? Because they were mostly designed by an 11-year-old girl based in
the UK!

But you may want to create your own work of art. For this, you will need to create an
instance of the Image class. Here’s an example of how to create an interesting pattern
with some LEDs brighter than others:

from microbit import display, Image

my_picture = Image(
 '33333:'
 '36663:'
 '36963:'
 '36663:'
 '33333:')

display.show(my_picture)

The results will look something like Figure 7-4.

When instantiating the Image class, pass in a string containing numbers representing
the brightness of each LED “pixel” starting from the top left and ending at the bottom
right. A colon (:) is used to represent the end of a line. The way I have formatted the
code in the preceding example allows you to see how this relates to the LED matrix
on the front of the micro:bit. You could just as easily have written the string as
'33333:36663:36963:36663:33333:'.

72 | Chapter 7: Visual Feedback

https://microbit-micropython.readthedocs.io/en/latest/image.html

Figure 7-4. A micro:bit with pixels of different brightness.

An instance of the Image class need not be bound by the dimensions of the display.
This may be useful if, for example, you are creating some sort of maze-like game
where only a subsection of the maze is to be displayed at any one time on the
micro:bit’s display. In this case, you could use a very long string, in a manner similar
to the one demonstrated, but covering an image of much larger dimensions. Alterna‐
tively, you could use the second form of creating an Image object:

from microbit import display, Image

buf = bytearray(x % 10 for x in range(100))
i = Image(10, 10, buf)

Using Python’s built-in bytearray type (a way to very efficiently store bytes), we store
numbers between 0 and 9 in a buffer to indicate the intensity of LEDs in an image.
Combined with an indication of the width and height, it’s possible to create a new
image. In the previous code example, it’s a 10 x 10 image where each row contains
pixels that get brighter the further they are to the right.

Given such an image, it is possible to slice and dice it in interesting ways to generate
new images. For example, to create a 5 x 5 viewport from a specific location in the
larger image (in order to show it on the display), use the crop method to return a new
(temporary) image to display:

display.show(i.crop(3, 4, 5, 5))

The crop method needs the X and Y coordinates of the top-lefthand position of the
new image within the original image, along with a width and height. In the example
above, the X (3) and Y (4) coordinates come first followed by the width and height
(both 5). If you were creating a game with a maze larger than the screen, you would

Text, Images, and Animation | 73

use crop to shift the display viewport over the image, representing the maze as the
player moves around (in some yet-to-be determined manner).

Instances of the Image class come with other useful methods such as, copy (to return
an exact copy of the image), invert (to return a new image by inverting the intensity
of the pixels in the source image) and fill(value) (to set all the pixels to the integer
value). Furthermore, once an Image instance is created it is possible to modify and
read specific pixel values as this REPL-based session demonstrates:

>>> i.get_pixel(1, 2)
1
>>> i.set_pixel(1, 2, 9)

The common pattern is the specification of the X and Y coordinates of the referenced
pixel in the image. Just pass these to return the current value of a specific pixel via the
get_pixel method. Additionally, supply a new valid value when you use set_pixel.
Note, updating the underlying image will not update the display—you will need to
refresh it with a suitable call to display.show the modified image.

If you have an image that is too wide or high it is possible to use various shift_[up,
down, left, right] methods to make scrolling very simple to achieve by supplying
an integer indicating the offset for the new image. Internally, this is how characters
are scrolled with the display.scroll method.

Finally, all the shift and crop methods are built upon a single, but very powerful,
method called blit. It takes a source image and a definition of a rectangle. It updates
the Image instance with the light intensity values defined in the area covered by the
specified rectangle in the original image. For example, the crop method could be
reimplemented like this:

def crop(self, x, y, w, h):
 result = Image(w, h) # Create a new empty image called "result".
 result.blit(self, x, y, w, h) # Blit from self into result.
 return result # Return the new image containing the crop.

The remaining piece of the micro:bit display puzzle is animation and, because of the
educational heritage of the device, it is very simple.

Use an iterator object (an object that is able to keep giving new items) that returns
instances of the Image class. These instances will act as frames in your animation. The
iterator object—the source of frames—is passed into the display.show method used
to show pictures. For example, a list of Image instances can act as a source of anima‐
tion frames. The Image class has two lists of such images already available:
ALL_CLOCKS (containing representations of all 12 positions of a clock hand) and
ALL_ARROWS (containing arrows pointing to the most common headings of a com‐
pass). To animate the hand of a clock on the micro:bit display, do this:

display.show(Image.ALL_CLOCKS, delay=50, wait=False, loop=True)

74 | Chapter 7: Visual Feedback

The effect is something akin to a radar display from a cheap 1970s sci-fi TV show.

You could, of course, use a generator function to keep creating new Image-based
“frames” in the animation:

from microbit import *
import random
import array

def animation():
 blinkenlights = array.array('b', [random.randint(0, 9) for i in range(25)])
 yield Image(5, 5, blinkenlights)

while True:
 display.show(animation())

The result of which is a blinkenlight display like the computer “WOPR” found in the
1983 movie War Games.

The simplicity and limited capabilities of LED displays are evident when compared to
the full-colour displays we are used to seeing in our phones, tablets, and laptops. The
sorts of devices that require such display capabilities do not run MicroPython, but it
doesn’t mean MicroPython can’t drive a relatively simple version of such displays.
The PyBoard’s LCD display skin is a great example of this capability in action.

PyBoard Colour LCD Display
The colour LCD display (lcd160cr) is an interesting peripheral for the PyBoard. Not
only is it a colour display, but it’s also touch-sensitive, so it can act as both an input
and output device—a sort of micro-version of an iPad (iPad nano?).

It is possible to connect the LCD display in two positions: X and Y (as shown in
Figure 7-5).

PyBoard Colour LCD Display | 75

Figure 7-5. The two positions for the LCD display: X (left) and Y (right).

Once connected, the simplest way to start using the peripheral is to run the demo
from the REPL:

>>> import lcd160cr_test
To run all tests: test_all(<lcd>)
Individual tests are: test_features, test_mandel
<lcd> argument should be a connection, eg "X", or an LCD160CR object
>>> lcd160cr_test.test_all('X')

As the instructions explain, call the test_all function with the appropriate position
(X or Y). You will see a few seconds of a graphical readout of the display’s features
followed by a blue Mandelbrot set. If these appear, you are ready to go. If not, some‐
times it’s good to switch things off, unplug the display, and plug it in again firmly and
restart.

It is very simple to get things onto the screen:

import lcd160cr

lcd = lcd160cr.LCD160CR('X')
lcd.erase()
lcd.write('Hello, World!')

76 | Chapter 7: Visual Feedback

6 “Elite” written using “leet” spelling. See https://en.wikipedia.org/wiki/Leet.

An object representing the physical LCD (lcd) is instantiated with the LCD160CR class
and an indication of how the device is connected ("X" or "Y"). Once instantiated, the
physical device will come to life and display the MicroPython logo to indicate that it
is working. Often you don’t need this, so the erase method clears the screen. Pass in a
string to print text on the screen via the write method. The end result is the message
rendered as small green writing in the top-lefthand corner. We have just created the
world’s smallest retro-monochrome, green-screen monitor! How 1337 is that?6

Not as 1337 as piping the REPL to the display:

>>> import lcd160cr
>>> import pyb
>>> lcd = lcd160cr.LCD160CR('X')
>>> lcd.erase()
>>> uart = pyb.UART('XA', 115200)
>>> pyb.repl_uart(uart)

At this point, all interactions with the REPL appear on the display. You too can bask
in the glory of looking like a miniature version of a Hollywood hacker.

More seriously, given the small form factor and even smaller text size, we should try
to make things readable by changing the font. There are four possible fonts, with the
default output being the smallest (0). Since you are probably already in the REPL
piped to the display, try changing the font to a value between 0 and 3 (inclusive):

>>> lcd.set_font(1)

The set_font method accepts optional arguments to change the look of the textual
output, all of which have a default value of 0. The scale argument defines the scaling
of the pixels used to render the text. If a pixel is square, its side is equal to scale + 1,
with scale’s maximum valid value as 63. The bold argument can be a value between 0
and 31; and as the value increases, so does the effect of boldness on the text. The
trans argument is a flag to determine if the characters are rendered with a transpar‐
ent background (1) or not (0). Finally, scroll is another flag to set if the display
should do a soft scroll (i.e., the text gradually moves up the screen) if the value is set
to 1, or a hard scroll (the text immediately moves up the screen) if the value is set to
0. Continuing the REPL-based example, we can set the font to font-family 3 with no
scaling, a slightly bold effect, zero transparency, and a cool smooth scrolling effect:

>>> lcd.set_font(3, scale=0, bold=1, trans=0, scroll=1)
>>> print("Hello, World!")

Use the set_text_color method to change both the text and background colours.
The colours need to be expressed as a 16-bit integer that represents the red, green,

PyBoard Colour LCD Display | 77

https://en.wikipedia.org/wiki/Leet

7 A “snow crash” is the static noise you get on the screen of an old mis-tuned analog television.

8 There are a large number of methods attached to the LCD160CR class that use the pen. They are described fully
in the MicroPython documentation.

and blue values. Happily, the LCD160CR class has a static method called rgb to do this
for you:

>>> text_colour = lcd.rgb(255, 128, 0)
>>> background = lcd.rgb(0, 128, 255)
>>> lcd.set_text_color(text_colour, background)
>>> lcd.write("Hello, World!")

Finally, to override the position of text, you need to provide the X and Y coordinates
for the upper-left corner of the new block of text:

>>> lcd.set_pos(20, 40)
>>> lcd.write("Hello, World!")

While textual output is important, it is graphical output that turns heads.

At a pixel-related level, the API is remarkably similar to that of the micro:bit. It’s pos‐
sible to set_pixel and get_pixel given X and Y coordinates and, when setting the
colour, an RGB value generated in the same way as for textual colour. The following
script demonstrates this sort of capability with a multicolour “snow crash”7 effect:

import lcd160cr
import random

lcd = lcd160cr.LCD160CR('X')
lcd.erase()

while True:
 r = random.randint(0, 255)
 g = random.randint(0, 255)
 b = random.randint(0, 255)
 colour = lcd.rgb(r, g, b)
 x = random.randint(0, lcd.w)
 y = random.randint(0, lcd.h)
 lcd.set_pixel(x, y, colour)

Notice the use of the lcd.w and lcd.h constants that define the display’s pixel width
and height, respectively.

There are also methods for drawing simple shapes and lines. These rely on the impor‐
tant concept of the pen. The pen has both a line and fill colour. The line colour defines
the outline colour of a shape, whereas the fill is the colour inside the shape. Drawing a
shape is as simple as defining the pen’s attributes with set_pen and drawing with one
of the two sorts of primitives: rectangles or lines. This continuation of the REPL ses‐
sion demonstrates the basic methods you need:8

78 | Chapter 7: Visual Feedback

https://docs.micropython.org/en/latest/pyboard/library/lcd160cr.html

9 Also known as a square.

>>> lcd.reset()
>>> lcd.set_pen(lcd.rgb(255, 0, 0), lcd.rgb(0, 0, 255))
>>> lcd.rect(20, 20, 40, 40)

In the preceding code example, the pen’s outline colour is set to red and the fill colour
is set to blue. An equilateral rectangle9 is drawn onto the display: its top-left corner is
defined by X and Y coordinates (20, 20) and width and height lengths (40, 40).

Given such simple primitive operations, it is very easy to quickly create something
with lots of visual appeal. For example, here’s a very simple script to continuously
generate pictures in the style of the famous Dutch artist, Piet Mondrian:

import pyb
import lcd160cr
from random import randint, choice, uniform

lcd = lcd160cr.LCD160CR('X')

MAX_DEPTH = 4
RED = lcd.rgb(255, 0, 0)
YELLOW = lcd.rgb(255, 255, 0)
BLUE = lcd.rgb(0, 0, 255)
WHITE = lcd.rgb(255, 255, 255)
BLACK = lcd.rgb(0, 0, 0)
COLOURS = [RED, YELLOW, BLUE, WHITE, WHITE, WHITE]

class Node:
 """
 A node in a tree representation of a Mondrian painting.
 """

 def __init__(self, depth=0):
 """
 Choose the colour of the rectangle, work out the depth
 add child nodes if not too deep.
 """
 self.colour = choice(COLOURS)
 self.depth = depth + 1
 self.children = []
 if self.depth <= MAX_DEPTH:
 self.direction = choice(['h', 'v'])
 self.divide = uniform(0.1, 0.9)
 self.children.append(Node(self.depth))
 self.children.append(Node(self.depth))

 def draw(self, x, y, w, h):
 """

PyBoard Colour LCD Display | 79

 Recursively draw this node and its children.
 """
 lcd.set_pen(BLACK, self.colour)
 lcd.rect(x, y, w, h)
 if self.children:
 if self.direction == 'h':
 self.children[0].draw(x, y, int(w * self.divide), h)
 self.children[1].draw(x + int(w * self.divide), y,
 int(w * (1.0 - self.divide)), h)
 else:
 self.children[0].draw(x, y, w, int(h * self.divide))
 self.children[1].draw(x, y + int(h * self.divide), w,
 int(h * (1.0 - self.divide)))

while True:
 # Keep re-drawing new Mondrian pictures every few seconds.
 tree = Node()
 tree.draw(0, 0, lcd.w, lcd.h)
 pyb.delay(randint(4000, 8000))

The results will look something like Figure 7-6.

Figure 7-6. MicroPython does Mondrian

I hope you agree, the picture looks quite convincing.

Such visual output is immediately striking for the user. An equally striking yet con‐
trasting capability is to program a device to sense its environment. As a result, it
comes alive by reacting to things external to itself.

80 | Chapter 7: Visual Feedback

CHAPTER 8

Input and Sensing

It is important for a device to react to interactions from users or changes in its envi‐
ronment. Such interactions are at the core of the device’s nonprogrammer user expe‐
rience. For example, shaking the device to reset the state of the program, using the
light sensor to change the intensity of the LEDs, or pressing a button to cycle through
a series of options are all interactions that rely on the device processing input or sens‐
ing changes in its environment.

The devices described in this book do not have keyboards, mice, or touchscreens like
traditional computing devices. So how are we to interact with them? Typing Python
commands into a REPL might be fun for programmers, but this doesn’t address the
needs of nontechnical users who need to communicate intents, instructions, or deci‐
sions in a manner that is intuitive, context sensitive, and perhaps even entertaining.
Therefore, it’s important to consider how MicroPython works with input and sensors.

Collectively, the devices covered in this book have a wide variety of input and sensing
capabilities available to them. Some, like the ESP8266/32-based devices, are limited
only to one or two buttons; others, like the Circuit Playground Express and micro:bit,
have all sorts of components through which users can interact with the device. In all
cases, it is possible to connect external sensors and peripherals to the boards via
GPIO pins, and the general prinicples of working with such hardware can be trans‐
ferred between devices.

We start our exploration of input and sensing with the ubiquitous button.

Buttons and Capacitative Touch
Buttons are interesting in an, “Ooh, I wonder what happens if I press this?” sort of a
way. As programmers, it’s our job to make sure people are not disappointed with the
result of pressing a button!

81

Every device has at least one reset button that will restart the board. Some devices
have several more buttons.

The micro:bit has the simplest means of interacting with its two buttons (labelled A
and B). These are represented by two objects found in the microbit module called
button_a and button_b. Both button objects have the same methods, and in order
for them to be useful, we need to consider the notion of an event loop and containing
a short pause.

A fundamental requirement when dealing with input is waiting for something to hap‐
pen. This is achieved with an event loop (code that continuously loops around waiting
for and handling input events). Furthermore, when user-generated events occur, they
often need to be handled in a way that works in human, rather than computer, time
frames. For example, when you press a button, the event loop will have cycled lots of
times in the fraction of a second you will have taken to actually press the button.
What happens if we only want the button-press to be handled once, rather than on
each of the numerous iterations of the event loop that occured while we pressed the
button? The solution is to insert a short pause to the event loop to slow it down so
multiple events don’t fire quickly when we only need to register a single event.

The next example illustrates both concepts:

from microbit import *

position = 2
while True: # event loop
 sleep(60) # pause
 if button_a.is_pressed():
 display.clear()
 position = max(0, position - 1)
 elif button_b.is_pressed():
 display.clear()
 position = min(4, position + 1)
 display.set_pixel(position, 2, 9)

In order to wait for something to happen, we simply make an infinite loop around a
piece of code that defines how to react to certain expected events (such as a button
press). In the example, the infinite loop is achieved in the simplest possible manner
with while True:. The resulting blocks of code are conditional on button presses. If
a button is pressed, the code changes the position value and then displays a pixel in
that position in the X-column and in Y-row three. It’s a very simple means of moving
the pixel from left to right. Perhaps the best way to understand what the “pause” line
is for is to remove it and try to use the buttons.

The problem is the event loop is way too quick for our human reflexes. If there were
no pause line to slow down the cycle of the loop, then you would only be able to
move the pixel to the extreme edges. Why? Because your reaction for pressing a but‐
ton is slow enough that the event loop will cycle too many times (thus moving the

82 | Chapter 8: Input and Sensing

pixel to the extreme left or extreme right). The pause gives you just enough time to
tap the button to move the pixel by a single unit. An interesting way to explore this
feature is to change the number of milliseconds the device sleeps as part of the pause
operation and observe how this affects the usefulness of the buttons.

Given that a button can be in only two states (pressed or released), then the button’s
is_pressed() method returns a Boolean value. Sometimes you need to know if a
button was pressed while the device was doing something else (such as scrolling text
along the display). In this case, use the was_pressed() method of a button object to
return a Boolean indicating if it had been pressed since the device started or the last
time the method was called. Finally, you may need to count the number of presses for
a button. Use get_presses() to return the running total and reset the total to zero.

These three methods give you a remarkable amount of flexibility when using the
micro:bit’s buttons. However, they hide some of the lower-level details of how such
buttons work.

Buttons, in general, are digital in that they can only ever be either on or off. Obvi‐
ously the microcontroller needs to detect the on or off state via the pin to which the
button is connected. To differentiate the state, the microprocessor measures the volt‐
age into the pin connected to the button.

A pin can be in three possible states: high, low, or floating.

If the pin detects some arbitrary signal, for example, 3.3 volts, then it is high; whereas
if it can’t detect a signal (0 volts), then it is low. In order for the pin to behave in a
well-defined manner under all conditions, it is necessary to set the pin to be either
pulled up (where the default signal is high) or pulled down (where the default signal
is low). If we don’t do this, the pin will be in the floating state: the microcontroller
may unpredictably interpret the input as either high or low. By setting the pull we are
setting, at the hardware level, a default value.

Armed with this information about the fundamental properties of pins, let’s examine
how the Circuit Playground Express works with its two buttons. The following simple
script demonstrates working with buttons at a lower level than on the micro:bit
(where such implementation details are hidden from the user). It creates a light dis‐
play: press the lefthand button to make the NeoPixels flash clockwise or press the
righthand button to reverse direction:

import neopixel
import time
import digitalio
from board import NEOPIXEL, BUTTON_A, BUTTON_B

np = neopixel.NeoPixel(NEOPIXEL, 10, auto_write=False)
button_a = digitalio.DigitalInOut(BUTTON_A)
button_a.pull = digitalio.Pull.DOWN

Buttons and Capacitative Touch | 83

button_b = digitalio.DigitalInOut(BUTTON_B)
button_b.pull = digitalio.Pull.DOWN

clockwise = True
while True:
 time.sleep(0.05)
 if button_a.value:
 clockwise = True
 elif button_b.value:
 clockwise = False
 for i in range(10):
 if clockwise:
 i = 9 - i
 for j in range(10):
 np[j] = tuple((max(0, val - 64) for val in np[j]))
 np[i] = (0, 0, 254)
 np.write()

This script should look familiar—it’s similar to the example used to demonstrate Neo‐
Pixels in the previous chapter. The most immediate difference is the use of the digi
talio module to create two objects representing buttons A and B.

Both buttons are instantiated as DigitalInOut objects that represent digital pins that
can act as both input or output. The button objects (button_a and button_b) are
instantiated with a reference to the pin to use on the actual board. These are the BUT
TON_A and BUTTON_B constants imported from the board module. The default state of
such objects is to read input (this can be changed with the object’s switch_to_output
and switch_to_input methods), so the default works for the purposes of this exam‐
ple. Once instantiated, the button objects have their pull set to DOWN. This means the
default signal will be low (i.e., the same as False in Python), which makes sense, since
a button’s default state is released: we only want the button to be “on” (or True in
Python) if it is pressed. To get the state of the button, one simply reads the value
attribute.

With this in mind, the example script sets the clockwise flag depending on which
button has been pressed.

The Circuit Playground Express also has a switch that’s similar to a button insofar as
you move it with your fingers. However, a switch remains in the state to which you
set it, rather than reverting to a default state once you release it. The switch on the
Circuit Playground Express can be in one of two states just like the clockwise flag in
the original script. As a result, we could re-write the example to use the switch as fol‐
lows:

import neopixel
import time
import digitalio

84 | Chapter 8: Input and Sensing

from board import NEOPIXEL, SLIDE_SWITCH

np = neopixel.NeoPixel(NEOPIXEL, 10, auto_write=False)
switch = digitalio.DigitalInOut(SLIDE_SWITCH)
switch.pull = digitalio.Pull.UP

while True:
 time.sleep(0.05)
 for i in range(10):
 if switch.value:
 i = 9 - i
 for j in range(10):
 np[j] = tuple((max(0, val - 64) for val in np[j]))
 np[i] = (0, 0, 254)
 np.write()

I will leave it as an exercise for the reader to work out how it works, although every‐
thing you need to understand the script was explained when describing the button-
based version.

The PyBoard also has a button labelled USR (in addition to the reset button) and
takes a slightly different approach to the micro:bit and Circuit Playground Express.
For a start, and rather confusingly, it calls the button a switch. As a result, it’s con‐
trolled via a Switch object:

import pyb

led = pyb.LED(1)
sw = pyb.Switch()
while True:
 pyb.delay(100)
 if sw():
 led.toggle()

This fragment of code is very close to how we treated buttons on the micro:bit and
Circuit Playground Express (although the implementation details are different
because we are using a version of MicroPython for a different device). As before,
there is an event loop and delay. The Boolean value of the switch is determined by
calling the sw object that represents the switch. From the user’s point of view, if you
press the button, it toggles the PyBoard’s red LED on and off.

However, MicroPython on the PyBoard provides an interesting alternative way to
interact with buttons through the use of a callback. A callback is a function that’s
called when a certain event happens (such as a button press). To identify when a cer‐
tain event has occurred, MicroPython uses an interrupt. An interrupt is simply a sig‐
nal that something needs immediate action. In this case, MicroPython sets up an
interrupt trigger on the pin to which the switch is connected.

Buttons and Capacitative Touch | 85

When the button is pressed, the pin changes state from low to high, causing the
microcontroller to register the change. It pauses what it’s doing by saving its current
state and calls the interrupt handler associated with the button. The interrupt handler
executes the callback function, and the microcontroller is notified that the interrup‐
tion has been handled. At this point, the microcontroller restores its pre-interrupt
state and continues as before. The code that was running doesn’t notice that it was
interrupted.

Using this interrupt/callback method, we can simplify the LED toggling code:

import pyb

sw = pyb.Switch()

def my_callback():
 pyb.LED(1).toggle()

sw.callback(my_callback)

When the button is pressed, the my_callback function is called. This will interrupt
any other code running at that moment in time. In case you were wondering, if more
than one interrupt fires at the same time, then the one with the highest (pre-
ordained) priority takes precedence, followed by any others in order of their priority.
The interrupt for the button is set at the lowest priority.

To clear a callback, simply set it to None like this: sw.callback(None).

There’s one more type of finger-related interaction you can perform with the
micro:bit and Circuit Playground Express: capacitative touch. Because the human
body has quite a large capacitance (i.e., the ability to store electric charge), it’s possible
to detect a change in the capacitance of the pin and whatever is connected to it. If you
are touching a pin, you are connected to it, and it’s possible to detect differences due
to the capacitance of your body.

This is only possible on the micro:bit with the large pins labelled, 0, 1, and 2. On the
Circuit Playground Express, all the non-power or ground pins can detect capacitative
touch.

As one might expect on the micro:bit, detecting touch is very simple:

from microbit import display, Image, pin0

whie True:
 display.show(Image.ASLEEP)
 if pin0.is_touched():
 display.show(Image.HAPPY)

86 | Chapter 8: Input and Sensing

The is_touched method returns a Boolean to indicate if it’s being touched. In the
previous example, if pin 0 is touched, the sleeping face shown on the display is
changed to a happy face. The Circuit Playground Express is only a little more compli‐
cated, but the effect is far more interesting:

import neopixel
import touchio
import digitalio
from board import *

Stops the speaker crackling when touched.
spkr = digitalio.DigitalInOut(SPEAKER_ENABLE)
spkr.switch_to_output()
spkr.value = False

np = neopixel.NeoPixel(NEOPIXEL, 10, auto_write=False)
touch_a1 = touchio.TouchIn(A1)
touch_a3 = touchio.TouchIn(A3)
touch_a4 = touchio.TouchIn(A4)
touch_a6 = touchio.TouchIn(A6)

while True:
 if touch_a4.value:
 np[0] = (255, 0, 0)
 np[1] = (255, 0, 0)
 if touch_a6.value:
 np[3] = (0, 255, 0)
 np[4] = (0, 255, 0)
 if touch_a1.value:
 np[5] = (255, 255, 0)
 np[6] = (255, 255, 0)
 if touch_a3.value:
 np[8] = (0, 0, 255)
 np[9] = (0, 0, 255)
 for j in range(10):
 np[j] = tuple((max(0, val - 32) for val in np[j]))
 np.write()

The end result is differently coloured NeoPixels light up if an adjacent pin is touched.
To make the effect feel more “alive”, the NeoPixels gradually dim when you stop
touching. As with the buttons on the Circuit Playground Express, you have to instan‐
tiate an object to represent the pin in the right sort of a way—in this case, we use the
TouchIn class found in the touchio module. As is always the case, you need to pass in
a reference to the physical pin via an object imported from the board module (in this
case, the objects, A1, A3, and so on). Inside the event loop are some conditionals to
check if the pin objects are registering high. If they are, the appropriately close Neo‐
Pixels are lit.

Buttons and Capacitative Touch | 87

Pin A0 is also attached to the speaker. If touched (and this is likely in this example), it
will cause the speaker to crackle. This behaviour is undesirable, so towards the start of
the code a DigitalInOut object is created with reference to the SPEAKER_ENABLE pin.
Setting the output of the resulting spkr object to False turns off the speaker to solve
the crackling speaker problem.

This example reminds me of the classic electronic game Simon Says. How could you
create a capacitive touch version with the Circuit Playground Express?

If the LCD screen is attached to the PyBoard, it can also be used to respond to touch.
The most useful methods are is_touched, which returns a Boolean to indicate if the
screen is currently touched, and get_touch, which returns a tuple of three values rep‐
resenting active (i.e., the screen is currently being touched), X and Y (the coordinates
of the touch). With only a few lines of code, it is possible to create a simple finger-
painting program:

import lcd160cr

lcd = lcd160cr.LCD160CR('X')
lcd.erase()
while True:
 a, x, y = lcd.get_touch()
 if a:
 lcd.set_pixel(x, y, lcd.rgb(255, 255, 255))

While it’s hard to be accurate when painting on such a small device, and you’re only
limited to black and white (how would you improve the script?), I believe the results
are quite impressive for only seven lines of code (see Figure 8-1).

Figure 8-1. A presidential portrait, but of which president?

88 | Chapter 8: Input and Sensing

1 Einstein famously showed that these two effects are equivalent.

Accelerometers, Gestures, and Compasses
When you use a modern mobile phone, it is able to detect how it is oriented, the
direction it is pointing, and sometimes how to react to gestures (such as a shake to
cancel a certain operation). This is remarkably useful as a means of user interaction.
For example, as you rotate your phone, the display is flipped from portrait to land‐
scape mode. Certain gestures may also indicate certain states, such as the aforemen‐
tioned shaking or placing the phone face down to turn off audible alerts. Finally, if
the phone can detect its heading, this information can be used in conjunction with
GPS signals in a mapping application to give you directions or, on its own, so your
phone becomes a compass.

Such attributes rely on readings from relatively simple components: the accelerome‐
ter and magnetometer (compass).

An accelerometer is an electromechanical device consisting of a mass on a spring. As
the mass moves in a certain direction due to force of gravity or an acceleration,1 the
capacitance changes between the moving mass and a fixed plate, allowing the
mechanical movement of the mass to be represented by changes in electrical current.
As with the touch-related interactions described, we use capacitance to measure
things, be it the capacitive properties of the human body (for touching pins) or the
movement of a mass adjacent to a fixed plate to measure gravity.

The accelerometers used in the PyBoard, micro:bit, and Circuit Playground Express
actually consist of three seperate sensors to detect gravitational force along three per‐
pendicular axes called X (left to right), Y (forwards and backwards), and Z (up and
down).

In contrast, a magnetometer measures magnetic fields (a compass is a very simple
example of this sort of device). In the case of the magnetometer on the micro:bit, it
uses a miniature Hall-effect sensor that detects the Earth’s magnetic field along the
same X, Y, and Z axes as the accelerometer. The sensor produces voltage proportional
to the strength and polarity of the magnetic field along each axis. This, in turn, is
converted to digital signals representing the magnetic field intensity along each axis.
By calibrating the compass and taking measurements along these axes, it is possible to
determine a heading (turning the micro:bit into a compass). Alternatively, such meas‐
urements can be used as a very basic metal detector.

The APIs for the accelerometers on the PyBoard, micro:bit, and Circuit Playground
Express are very similar: you get back measurements for the X, Y, and Z axes. For
example, the following fragment of code for the micro:bit uses the accelerometer to

Accelerometers, Gestures, and Compasses | 89

steer a pixel with a glowing tail around the display (moving pixels around on the
screen like this is a fundamental feature of many games on the device):

from microbit import *

x = 2
y = 2
sensitivity = 50
pause = 90
fade = 2

while True:
 roll = accelerometer.get_x()
 yaw = accelerometer.get_y()
 if roll < -sensitivity:
 x = max(0, x - 1)
 elif roll > sensitivity:
 x = min(4, x + 1)
 if yaw < -sensitivity:
 y = max(0, y - 1)
 elif yaw > sensitivity:
 y = min(4, y + 1)
 for i in range(5):
 for j in range(5):
 brightness = max(0, display.get_pixel(i, j) - fade)
 display.set_pixel(i, j, brightness)
 display.set_pixel(x, y, 9)
 sleep(pause)

The important lines are where we call accelerometer.get_x and accelerome
ter.get_y. There is also a notion of sensitivity such that movement won’t register
in a direction until some threshold is reached (in the example, this is given the arbi‐
trary value 50, arrived at through experimentation). This is because the accelerometer
is very sensitive, and humans do not have such fine-grained motor skills to work with
such sensitive devices. The threshold means we have to tip the device in one direction
or another more than enough for us humans to be able to register the difference.
When some aspect of the hardware is used to interact with humans, there often needs
to be some sort dampening of sensitivity via thresholds or bucketing values so the
device is both manageable and usable.

In the case of an accelerometer, such interactions are reminiscent of the Wii remote
and other similar peripherals for console games used to control player characters and
other game-related assets. The tilting and movement of an accelerometer is a useful
metaphor for controlling an aspect of some other thing (such as the position of a
pixel). An accelerometer is also useful if you need to log the forces applied to an
object, such as a model rocket.

Another use of the accelerometer is to detect gestures, such as shake, freefall, or face
up. Such gestures are useful from a user interaction point of view since they can also

90 | Chapter 8: Input and Sensing

represent states or instructions. For example, shake may mean something negative
like “cancel and restart the game”; freefall is probably an indication that the device is
in the process of being dropped, so prepare for a crash landing; and face up may just
mean display something (since you look down upon the display of the micro:bit) in a
similar manner to the way mobile phones activate their screens when you take them
away from your ear to look at them.

Currently, only the micro:bit has built-in support for gestures. The following example
demonstrates how they can be used:

from microbit import *

while True:
 if accelerometer.was_gesture('shake'):
 display.show(Image.ANGRY)
 elif accelerometer.was_gesture('face up'):
 display.show(Image.ASLEEP)
 elif accelerometer.was_gesture('up'):
 display.show(Image.HAPPY)
 sleep(100)

If the device is shaken, it displays an angry face; if it is flat but face up, it appears
asleep; and if it is held upright, it’s happy to see you. The micro:bit can recognise the
following list of gestures: up, down, left, right, face up, face down, freefall, 3g,
6g, 8g, and shake.

The micro:bit is the only device with an onboard magnetometer. It’s not very accurate
and requires calibration before use. Calibration is achieved via the compass.cali
brate method, which causes the device to wait until you’ve drawn a blocky circle on
the display by rotating the device to move a pixel around the screen. Once calibrated,
the micro:bit is able to report a heading with 0 as “north” (or some other strong mag‐
netic field). Here’s how to turn the device into a compass that displays where the
micro:bit thinks north is:

from microbit import *

compass.calibrate()
while True:
 sleep(100)
 needle = ((15 - compass.heading()) // 30) % 12
 display.show(Image.ALL_CLOCKS[needle])

Sound, Light, and Temperature
Sound, light, and temperature-sensing roughly translate to the human senses of hear‐
ing, sight, and touch (although, such sensing is nowhere near as good as the human
equivalent). The Circuit Playground Express has such sensors built in.

Sound, Light, and Temperature | 91

Sound sensing is done with a microphone, a device that turns sound waves into elec‐
trical signals. In the case of the part on the Circuit Playground Express, it’s another
small electromechanical device that works in a way that is similar to the accelerome‐
ter: there’s a membrane etched into the device that vibrates in response to the changes
in air pressure caused by sound waves. As the membrane vibrates, the capacitance
between the membrane and a fixed plate changes, allowing the mechanical movement
of the vibrating membrane to become changes in electrical current and eventually a
digital signal.

Light sensing is essentially an LED in reverse. If you remember, when an electrical
current is is applied to an LED, an electroluminescent semiconductor emits light.
However, if light is shone onto an LED, an electrical current will flow through the
LED but in the opposite direction to the flow when the LED emits light. By measur‐
ing this current we can use an LED to detect light. This is how light detection works
on the micro:bit. The light-detecting capabilities of the Circuit Playground Express
are provided by a phototransistor built into the board. A phototransistor is a compo‐
nent that specialises in detecting light (rather than re-using the characteristics of
LEDs) and, just like the reverse LED trick, turns light energy into electrical current.

Temperature sensing is done with a thermistor, a component whose resistance
changes with temperature. This is how the temperature sensor on the Circuit Play‐
ground Express works. However, many chips, including the microcontrollers that run
MicroPython, have a minute on-chip thermal diode that’s used to monitor the tem‐
perature of the chip. A thermal diode changes voltage across it according to tempera‐
ture: as the temperature increases, the voltage decreases. This change is used to
measure the temperature of the chip, and it is how temperature is read on the
micro:bit.

Given the physical properties of such sensors, how can we use them?

The following example of how to use the microphone on the Cir‐
cuit Playground Express makes use of an API that is not yet avail‐
able at the time of publication.
However, given the expected speed of development, chances are the
API will be in the latest version of CircuitPython very soon (look
for a version 2.0 or greater).
While the following example demonstrates the basics, the final ver‐
sion will also include more capabilities, such as streaming audio
data onto the filesystem, so you’ll be able to record much longer
fragments of sound.

The simplest way to use the onboard microphone of the Circuit Playground Express
is to record short snippets of audio into a buffer. The following example is a magic
echo machine. When the device starts, the NeoPixels around the edge of the board

92 | Chapter 8: Input and Sensing

sequentially light up to indicate a sort of countdown. When the microphone is listen‐
ing, all the NeoPixels are at a full green brightness. You have about a second’s worth
of time. The NeoPixels switch off, and the device plays back what it recorded via the
onboard speaker. If you hold down button A during this process, the device will play
back the recording at “chipmunk” speed. Holding down button B has the opposite
effect: the audio is slowed down and lowered to mimic Barry White. Of course, if you
don’t press any of the buttons, you’ll hear the audio played back at the correct pitch.

import neopixel
import audiobusio
import digitalio
import audioio
import time
from board import *

def countdown(np):
 """ Uses the NeoPixels to display a countdown."""
 # Start from an "off" state.
 np.fill((0, 0, 0))
 np.write()
 for i in range(10):
 np[i] = (0, 20, 0)
 np.write()
 time.sleep(0.5)
 np.fill((0, 128, 0))
 np.write()

def record():
 """ Returns a buffer of recorded sound."""
 buf = bytearray(8000)
 with audiobusio.PDMIn(MICROPHONE_CLOCK, MICROPHONE_DATA) as mic:
 mic.record(buf, len(buf))
 return buf

def play(buf, freq):
 """
 Play the referenced buffer of recorded sound at a certain
 frequency.
 """
 # Set the speaker ready for output.
 speaker_enable = digitalio.DigitalInOut(SPEAKER_ENABLE)
 speaker_enable.switch_to_output(value = True)
 # Play the audio buffer through the speaker.
 with audioio.AudioOut(SPEAKER, buf) as speaker:
 speaker.frequency = freq
 speaker.play()
 # Block while the speaker is playing.
 while speaker.playing:

Sound, Light, and Temperature | 93

 pass

neopixels = neopixel.NeoPixel(NEOPIXEL, 10, auto_write=False)
button_a = digitalio.DigitalInOut(BUTTON_A)
button_a.pull = digitalio.Pull.DOWN
button_b = digitalio.DigitalInOut(BUTTON_B)
button_b.pull = digitalio.Pull.DOWN

countdown(neopixels)
audio_buffer = record()
neopixels.fill((0, 0, 0))
neopixels.write()

freq = 8000 # Default = normal speed.
if button_a.value:
 freq = 12000 # Button A = chipmunk.
elif button_b.value:
 freq = 6000 # Button B = Barry White.

play(audio_buffer, freq)

The block of code of interest to us is in the record function. A bytearray buffer is
created and used by an instance of the PDMIn class found within the audiobusio mod‐
ule. The class is instantiated with references to the microphone clock and data pins
needed to perform any recording. The “PDM” in PDMIn is pulse density modulation, a
method of representing an analog signal with binary (on/off) data. The relative den‐
sity of pulses in the binary data corresponds to the analog signal’s amplitude. Put
(very) simply, a higher density of “on” values occurs at the peaks of a wave, whereas a
lower density occurs in the troughs. In any case, the resulting mic class has a record
method that fills the buffer buf with bytes representing recorded sound measured
using pulse density modulation. At the end of the function, the buffer is returned for
further processing.

The record function, used in concert with the countdown and play functions, turns
the Circuit Playground Express into a silly sound-based toy. (We’ll cover the speaker
on the Circuit Playground Express in some detail in Chapter 11.)

From a programmatic point of view, the light sensor is used in a different way to the
microphone: it is an analog input pin whose value relates to the amount of light
detected by the physical sensor. The higher the number, the more light is detected.
The same is true of the temperature sensor, with the resulting numbers reflecting
changes in the temperature. The following REPL session demonstrates:

>>> import analogio
>>> from board import *
>>> light = analogio.AnalogIn(LIGHT)
>>> light.value # in a dark place

94 | Chapter 8: Input and Sensing

152
>>> light.value # held up at daylight
12037
>>> temp = analogio.AnalogIn(TEMPERATURE)
>>> temp.value # ambient room temperature
30075
>>> temp.value # after blowing warm air on the sensor
36405
>>> temp.value # waiting a few seconds for it to cool down
34208

You are probably wondering how such raw analog readings from a pin can be turned
into something useful. While such cute REPL-based demonstrations illustrate a point,
they are not that useful in terms of getting a reading expressed in a meaningful unit
of measurement. For this to happen, you will need to use the libraries currently in
development created by Adafruit. Development is ongoing and fast moving (hence
my reticence to write about them at this moment in time since they are likely to
change); however, using them is as simple as downloading the latest release and copy‐
ing the modules over to the flash-based filesystem of the Circuit Playground Express.

A quick example will suffice to demonstrate such libraries in action. Here’s how to get
the current temperature in degrees Celsius from the Circuit Playground’s thermistor:

>>> import adafruit_thermistor
>>> import board
>>> thermistor = adafruit_thermistor.Thermistor(board.TEMPERATURE, 10000, 10000,
 25, 3950)
>>> thermistor.temperature
26.60413

The arguments used by the Thermistor class relate to settings dependent on the
model of thermistor in use. The ones used in the preceding example are correct for
the Circuit Playground Express.

In the case of the micro:bit, the temperature is expressed in degrees Celcius. It repre‐
sents the current temperature of the microcontroller rather than the ambient temper‐
ature:

>>> from microbit import temperature
>>> temperature()
24

Sensing with Peripherals
While the micro:bit, Circuit Playground Express and, to a lesser extent, PyBoard have
inputs and sensors built into the boards, it is possible to connect such peripherals to
the GPIO pins of any of the devices running MicroPython. The important thing to
remember is that you access the device in exactly the way that has been demonstrated
throughout this chapter: via pins. In the case of external peripherals, they will use the

Sensing with Peripherals | 95

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle

externally available pins rather than “pins” directly attached to built-in components
attached to the board.

A very simple example using ESP8266-based boards (as yet, unused in this chapter)
will be sufficient to demonstrate the general principal (see Figure 8-2).

Figure 8-2. Simple sensing with two wires

Very carefully connect wires to the GND and pin labelled D5 on the physical board.
We’re going to simulate a simple digital signal that could be created by an external
button. The following code illuminates the onboard LED every time you touch the
wires together:

from machine import Pin

led = Pin(2, Pin.OUT)
button = Pin(14, Pin.IN, Pin.PULL_UP)
while True:
 led.value(button.value())

96 | Chapter 8: Input and Sensing

Both the led and button objects are instances of the Pin class, which is instantiated
with a pin number and an indication of whether it is to be used for output (as the led
is) or input (as the button is). Since we need to take a reading from the button, we
ensure that it’s not in a floating state by passing in a third PULL_UP argument. Finally,
the value set for the LED is whatever the value of the button is read to be. As the
wires touch, changing the value of the input into the button pin, so the output is
changed to the led pin.

Given such playful experiments with both visual output, inputs, and sensors, we are
in a good position to take a detailed look at not only how the GPIO pins work but
also at the various protocols you might use to communicate with attached devices.

Sensing with Peripherals | 97

CHAPTER 9

GPIO

General Purpose Input and Output (GPIO) is how all the devices connect to the
external world.

This connection is achieved in a physical sense via “pins” that ultimately connect to
the microcontroller running MicroPython. By controlling or reading the voltage
from the pins, MicroPython is able to both sense and control the external world
through the peripherals connected to them. Each pin is given a name so we can refer‐
ence it and, depending on how it is configured, is capable of processing and emitting
different sorts of signals.

This chapter explains how pins work and describes three common protocols that use
the pins to communicate with the outside world: UART, SPI, and I2C. Such protocols
make interacting with external peripherals both easy and standardised.

Pins
“Pins” is a generic term for things that, historically, looked like pins but these days,
often do not. For the purposes of this book, a pin is a conductive area connected to
the microcontroller through which communication may take place with external
peripherals. Figure 9-1 shows a close-up picture of the “pins” on the micro:bit:

Figure 9-1. Pins on a micro:bit

99

They don’t look like pins at all, and some of them are big enough for you to attach an
alligator clip. The pins form the bottom edge of the board, and you may be wonder‐
ing how you are supposed to connect things to all the smaller pins. The answer is to
use an edge connector into which you plug jumper cables connected to external
peripherals or a breadboard onto which you can place external components
(Figure 9-2).

Figure 9-2. A micro:bit in an edge connector attached with an adjacent breadboard

100 | Chapter 9: GPIO

The pins on a Circuit Playground Express are all like the micro:bit’s—large for
alligator-clip-related reasons. In contrast, the PyBoard comes in two configurations:
without any pin connections (there are just holes in the circuit board into which one
solders such connectors) or pre-soldered with female pins into which one pokes jump
cables to which you attach the external peripherals. The ESP8266/32-based boards
often come with male pins pre-soldered onto the board—at last, devices with GPIO
pins that actually look like pins!

Pins are named so we can reference them in our code. References to pins are found in
different places, depending on the version of MicroPython you have running on your
device. If you’re using the micro:bit you’ll find them in the microbit module. They’re
in the board module if you’re using CircuitPython with Adafruit devices. Both the
original PyBoard and the ESP8266/32 ports of MicroPython have a Pin class that you
instantiate with the name of the pin and some notion of its characteristics (for exam‐
ple, that it’s a digital input).

Names are usually printed onto the board so it is possible to look at the pin and work
out what it’s called. Different pins may be used for difference sorts of things. Some
pins simply provide electrical current at an advertised voltage in order to power an
external peripheral. The “3v” pin on the micro:bit is a good example of this sort of
pin, and you can think of it as the equivalent of the positive end of a battery.

Other pins act as ground (often labelled GND), which is the equivalent of the negative
end of a battery. The pins that only provide current and those labelled ground are not
under your control since they only do what their name suggests.

It is the other pins that are more interesting to us and they may be capable of doing
different sorts of things. For instance, all of them will be capable of acting as digital
pins. You control them to be either low (0 V) or high (producing current at the
board’s supply voltage, often 3.3 V). Some others will be able to act as analog pins,
capable of sending or receiving signals that are not high or low but may be some‐
where between each extreme. Usually such graduation in value is manifested as dif‐
ferences in voltage that are read by an analog-to-digital converter (ADC) and turned
into a number within a certain range. Analog output is created by a digital-to-analog
converter (DAC) that takes a number and turns it into a voltage representation of the
analog value. Of course, digital pins can pretend to be analog by using the pulse
width modulation trick described Chapter 7. Finally, some pins are configured in
such a way as to allow them to respond to capacative touch (as described in Chap‐
ter 8).

Remember that GPIO pins can be in three default input states: high, low, and floating.
By setting the “pull” of the pin (to high or low), we avoid the indeterminate floating
state whose signal will reflect the ambient electrical conditions of the pin.

Pins | 101

On some boards, it is possible to define interrupts that kick in if their input changes.
This generally follows the pattern of defining a simple callback function to handle the
interrupt and assigning it to a type of change on a specific pin. The following example
for the ESP8266 boards demonstrates this:

from machine import Pin

def callback(p):
 print('Pin', p)

p0 = Pin(0, Pin.IN)
p0.irq(trigger=Pin.IRQ_FALLING, handler=callback)

The callback function receives an object representing the pin, p, that triggered the
interrupt and prints it. Such hard interrupts trigger as soon as the expected event
occurs, interrupting any running code. As a result, the callback functions that handle
such interrupts are limited in what they can do (for example, they cannot allocate
memory) and should be as simple as possible.

Next, an input pin is defined, and we assign the callback function as a handler for an
interrupt request (IRQ) by defining the trigger (the pin drops from a high to low
state) and referencing the callback function. From this moment on, if you apply
high and then low voltages to pin 0, you’ll see the results of the print function used
in the callback.

Sometimes you only need to use a single pin to send or receive a signal. This is called
serial communication, since the data is sent sequentially, a single bit at a time. Alterna‐
tively, you may need to send or receive data via multiple pins. This is called parallel
communication, as several bits are sent at once over the available channels of commu‐
nication. Such connections that carry signals between devices and components are
called a bus.

To work out what pins work in what way (if the name of the pin doesn’t tell you that
already), you should consult the pinout diagram for the device. Figure 9-3 shows
what the micro:bit’s pinout looks like.

Notice how each pin has a name and some indication of its function. Some of the
pins are re-used to control things like the LEDs on the display. Rather than reproduce
pinouts in this book (that with new iterations of boards may result in changes), I sug‐
gest you look online for them, typing the name of the device and the word “pinout”
into a search engine.

While this sort of information is useful, many of the peripherals you will want to use
with your boards use protocols that sit on top of the physical capabilities of the vari‐
ous GPIO pins. It is to three of these protocols that we turn our attention for the rest
of the chapter. Once you understand the basics of each of these protocols, it should be
a relatively simple task to connect a peripheral, read its associated data sheet (pro‐

102 | Chapter 9: GPIO

duced by the manufacturer), and work out how to use the expected protocol to make
use of it.

Figure 9-3. The micro:bit’s pinout diagram

UART
When you plug a board into your computer via the USB cable it is possible to com‐
municate with the device using the REPL. What makes that possible is the universal
asynchronous receiver/transmitter (UART), a part of the microcontroller that mediates
between serial and parallel communication. Serial messages come in one bit at a time
(a high/low signal), and the UART hardware assembles the signal into bytes (a parallel
representation usually consisting of 8 bits) that are sent via an internal bus for further
processing by the microprocessor. Conversely, to send a message the UART takes a
byte and turns it into a series of high/low signals representing the constituent bits.

UART | 103

For this to work, several arrangements need to be made. First, the transmitting port
(usually called TX) of device A must connect to the receiving port (usually called RX)
of device B, and vice versa.

Second, there also needs to be agreement about the timing of the serial communica‐
tion so the UART can detect the individual high/low signals. This is the speed of
communication and is expressed as one of several standard baud rates: 9600, 14400,
19200, 28800, 38400, 57600, and 115200 bits per second.

Third, sometimes you may need to specify the number of bits per byte (although the
standard is usually 8). You may also need to specify whether to use a parity bit (whose
function is to detect errors in transmission), and the number of stop bits that signal
the end of a unit of transmission.

The UART also has a “"first in/first out” (FIFO) queue so bytes can be buffered if they
are not read as soon as they’re received.

By default, the UART on MicroPython boards is connected to the internal USB-
UART TX/RX pins that connect to a USB serial convertor, thus connecting the UART
to your PC via the USB port. On the PC end of things, a library like pySerial or a tool
like picocom opens a serial connection via a USB port on your PC, thus enabling you
to send and receive data to and from the Python REPL. The default baud rate for con‐
necting to MicroPython in this way is 115200.

UART interactions in MicroPython require that the connection is configured (speci‐
fying the pins, baud rate, and other attributes already discussed). Each board has a
slightly different way to instantiate and configure the UART although, at a conceptual
level, they all work in the same way. Once configured, you will be working with a byte
stream with familiar methods such as read, readline, and write. This is consistent
across all platforms. The following micro:bit-based example is typical and demon‐
strates how to use the UART to read and write to a connected PC via the USB-
serial bus:

from microbit import *

while True:
 msg = uart.read()
 if msg:
 uart.write(msg)

This short script simply echos anything it receives (it uses the default UART settings,
so it is receiving and transmitting via the USB port). If you connect to the device in
the same way you would with the REPL, it will just reply with any of the characters
you type. It’s a very basic example, but all the fundamentals are contained within the
script: read from the buffer and write a response. It is important to note that the
micro:bit has a uart object that mediates such communication. Other boards will
require you to instantiate a UART class with the right configuration for your needs. In

104 | Chapter 9: GPIO

https://pythonhosted.org/pyserial/

this case, please consult the documentation for the port of MicroPython that targets
your device. It’s also important to point out that UART isn’t just for REPL- or USB-
based interactions; it can be used to facilitate all sorts of useful yet simple inter-device
communication.

SPI
As the name suggests, the serial peripheral interface (SPI) is another serial protocol
whose aim is to facilitate communication with peripherals. However, it is different
from using the UART in a number of important ways.

As you know, the UART is an asynchronous protocol, meaning there is no signal used
to indicate timing synchronisation to an agreed single clock when communicating
between devices. All each device knows is the expected baud rate (speed) of transmis‐
sion that has been agreed in advance. However, this can be a problem if the two devi‐
ces have slightly different clocks: if the receiver samples the signal at the wrong time
(to ascertain the high or low state on the pin), it will end up producing garbage. To
work around this problem, the transmitting UART will add bits (for example, the
stop bit) to help the receiving UART synchronise with the data as it arrives. Differ‐
ences in data rate are not usually a problem in this case because the receiver will re-
synchronise upon receipt of the stop bit. However, such asynchronous
communication adds a lot of overhead in the form of stop bits, and the relatively
complicated UART hardware needed to make such communication possible. Some‐
times we need to connect with relatively simple peripherals that may not have such
capabilities built in.

SPI takes a different approach: it’s a synchonous data bus, and there is a notion of
hierarchy of devices.

SPI is synchronous because one of the connections between devices is an oscillating
clock signal that tells devices exactly when to sample the high or low states of the sig‐
nal (usually labelled as SCLK). As a result, the measures and complexity introduced
to mitigate differences in clocks in UART-based communication are replaced by the
clock signal.

You may wonder how devices tell where the clock signal comes from. This is
answered by the hierarchical nature of SPI.

There is a primary device (usually the microcontroller) that, by prearrangement, sup‐
plies the clock signal. By convention, this is called the master with any other device

SPI | 105

1 I find the use of terminology such as “master” and “slave” distasteful (far better to say “primary”, “secondary”,
or “tertiary”, etc.), but it’s the historic convention that’s used in all the documentation that you’ll read, so I’ll
hold my nose and continue to use such a convention in the hope that future engineers will name aspects of
their protocols with a sympathetic appreciation of such loaded terms.

connected via SPI referred to as slave[s].1 In a similar way to how UART has TX and
RX connections, the SPI protocol calls its data transmission connections MOSI (mas‐
ter out, slave in) and MISO (master in, slave out). All the slave devices receive and
transmit on the same MOSI and MISO connections, so there needs to be some way to
differentiate between signals to and from specific slave devices. This is achieved by
the chip select (CS) connection (also sometimes called slave select). This connection
indicates when a slave device should send and/or receive data and is done in an
active-low configuration: the pins are pulled high by default and go low when they
signal that the slave should activate. There are a couple of ways in which such slave-
select signalling can be organised.

Figure 9-4 shows how the master device has a one-to-one CS connection with each of
the slave devices. Each slave device is activated by its unique CS connection, although
it means that the master must use as many separate pins as there are slave devices.

Figure 9-4. SPI configuration with three independent slaves

Some devices prefer to be in a “daisy chain” configuration. In this case, there is only
one CS connection that simultaneously activates all the slave devices. However, the

106 | Chapter 9: GPIO

first slave’s MISO is connected to the second slave’s MOSI and so on so that all the
slave devices are connected like a daisy chain. Data is transmitted by each slave by
passing on, in the current group of clock pulses, an exact copy of the data received
during the previous group of clock pulses. In this way the serial data eventually flows
through to all the connected devices. When the CS connection activates all the slave
devices, each device, by knowing its address in the sequence, processes the data at the
appropriate location in the data series that flowed through the daisy chain. For exam‐
ple, if we had three devices, each expecting a byte of data, we send a sequence of three
bytes that eventually flows through to all the devices (see). When the CS is activated,
the first device uses the byte in position 0, the second device uses the byte in position
1, and the third device uses the byte in position 2. In this way, we can connect many
devices together without using a large number of pins. This is called a shift register
and is one way to convert serial communication into a parallel equivalent.

Figure 9-5. SPI configuration with three daisy-chained slaves

You will notice from pinout diagrams that some pins will be labelled with the names
of SPI connections (SCLK, MOSI, MISO, etc.). Use these pins to attach SPI devices.
Since there is an indeterminate number of CS connections, depending on how you
are organising signalling, the CS pin should be selected and controlled by you. As
with UART, each device is slightly different in terms of the steps to configure your SPI
connections, although they are conceptually very similar. As before, you should con‐
sult the API documents for your device for the specific details. Nevertheless, the

SPI | 107

following REPL-based example for the PyBoard illustrates the essential steps you’ll
need to take to make things work:

>>> from machine import SPI, Pin
>>> spi = SPI('X')
>>> cs = Pin('X1', Pin.OUT)
>>> cs.value(0)
>>> buffer = bytearray(5)
>>> spi.write_readinto(b'hello', buffer)
>>> cs.value(1)

An spi object is instantiated with an indication of its position (there are two orienta‐
tions for using SPI on the PyBoard: “X” and “Y”). The SPI class assumes the device
will act as the master. A cs object is also instantiated from the Pin class to represent
the chip select connection that is arbitrarily using the pin “X1” (see the PyBoard pin‐
out to locate this pin). Note how it is set as an output. Pulling the cs object to low (0)
indicates that any further interactions target the slave device connected to the chip
select pin. A bytearray buffer is created for sending and receiving data. This must be
the same size as the data to be sent. The message is sent and a response received into
the buffer by calling the write_readinto method. Finally, the chip select connection
is returned to high (1), indicating the end of the interaction.

In case you are wondering what bytes to send to SPI-connected peripherals in order
to make them do something useful, or what their responses may mean, you should
look at the manufacturer’s data sheet for the device. It’s important to note that, more
often than not, the MicroPython community will have created a module that
abstracts away the SPI communication for a particular device to allow you to concen‐
trate on the “business logic” of your application rather than SPI-related implementa‐
tion details. A good example is the lcd160cr module for the PyBoard that we used in
an earlier chapter to drive the LCD colour display.

I2C
The inter-integrated circuit (I2C) protocol is the final hardware protocol you are
likely to encounter with MicroPython.

Why another protocol? The answer can be found by looking at some of the draw‐
backs of UART or SPI.

With UART you are limited to a one-to-one connection and the overhead needed to
mitigate problems with the asynchronous nature of the protocol. With SPI you
require at least four connections (and potentially a lot more if you use several slave
devices).

With I2C you only need two physical connections like UART, but those two wires
could support many slave devices like SPI. Furthermore, I2C is capable of supporting

108 | Chapter 9: GPIO

a multiple master system whereby the master devices take it in turn to communicate
with the slaves connected to the bus.

However, I2C isn’t capable of SPI’s speed of data transmission, so devices that need
speedy data transfers will often use SPI rather than I2C. Both I2C and SPI are capable
of much faster rates of data transfer than UART.

The two connections used by I2C are called SCL (for the clock signal) and SDA (for
the data). The clock signal always comes from the current master. The connections
for I2C are open drain, meaning they are pulled high by default, and devices change
the signal by pulling low. This avoids the potential collision of a device driving the
signal high while another is trying to pull it low (eliminating a situation where con‐
flicting devices may cause damage to each other).

The protocol sent down the wire is more complicated than UART or SPI. Messages
contain two parts: an address frame that indicates for whom the subsequent data is
intended, and one or more data frames containing the actual data.

Communication is initiated by the master leaving the SCL connection high while
pulling SDA low. This alerts the slave devices that a new message is about to be sent.
The address frame is always the first thing sent in a new message and consists of a 7-
bit address identifying the target slave, followed by a bit to indicate if the message is a
read (1) or write (0). A ninth bit is used to allow the target slave to acknowledge
receipt of the address frame. To do this, the target slave must pull the SDA line low
before the ninth clock pulse. If this acknowledgment doesn’t happen, the exchange
halts, and it’s up to the master to decide how to proceed.

Assuming a successful acknowledgment of the address frame, the subsequent data
frames are synchronised by the master sending clock pulses via SCL, with the actual
data transmitted via SDA by either the master or target slave (depending on if this is a
read or write operation). The number of subsequent data frames is arbitrary in length
and only stops when the master generates a stop condition: first SCL moves from low
to high and remains high while SDA also moves from low to high.

While this may sound more complicated than SPI in terms of implementation details
(it is), the end result is very easy to use from a programmatic point of view. Again, the
caveats about different boards working slightly differently whilst being conceptually
similar apply. Here is a REPL session as if using a PyBoard. The example assumes the
connections as per the board’s pinout diagram for SCL and SDA connections:

>>> from machine import I2C
>>> i2c = I2C('X')
>>> i2c.scan()
[46]
>>> i2c.writeto(46, b'A')
1
>>> i2c.readfrom(46, 8)

I2C | 109

b'\x00A\x00A\x00A\x00A'
>>> i2c.writeto_mem(46, 0, b'A')
>>> i2c.readfrom_mem(46, 0, 2)
b'\x00A'

In a fashion similar to the SPI example earlier, an i2c object is instantiated with an
indication of the orientation. The I2C class assumes the device will act as a master.
Since there could be several devices connected to the I2C bus, it’s possible to scan for
their addresses (yielding a single device with the address 46). All subsequent commu‐
nication uses this address to indicate the target device for instructions. The writeto
and readfrom methods work as expected (sending a byte representation of “A” and
receiving 8 bytes in return). The remaining two lines demonstrate how to write to
and read from a particular memory address (indicated by 0) on a specific device (with
the address 46).

As with SPI, you probably won’t need to directly use I2C since MicroPython will pro‐
vide modules for specific devices that wrap all the implementation details. However, if
you do need to drop to the I2C level, you should consult the data sheet from the man‐
ufacturer of the attached peripheral to discover what messages are used to interact
with the device.

Miscellaneous GPIO Techniques and Protocols
The topics covered so far in this chapter give you a good foundation of knowledge
about GPIO and should cover most of your GPIO-related interactions. However,
sometimes you will encounter something a little more esoteric, so this final section
will examine some of the darker corners to cover such cases.

Bit banging sounds like a nerdy version of whack-a-mole. It’s actually a lot more fun:
it’s when you ignore hardware protocols and use software to control pins, timing, lev‐
els, and synchronisation in order to create a low-cost, highly bespoke solution to a
peripheral-related problem. To say that it’s a “hack” is an understatement, but that’s
what makes it such fun. So if you hear of someone mentioning bit banging, what they
really mean is that they’re going “off piste” with code in terms of interactions with the
hardware. Given the usually bespoke or experimental nature of a bit banging hack,
the only common ground to describe here is that everything is controlled by the soft‐
ware, as needs apply, be that sampling, timing, controlling the signal, buffering, and
so on. It’s the embedded version of poking with a stick to see what happens until
you’ve figured it out. Why would you do such a thing? Sometimes it’s the simplest
solution and reduces the overhead of complex code or allows you to abandon a large
library (where you’re using only a small subset of its capabilities) in order to save pre‐
cious space or resources.

Some peripherals don’t use UART, SPI, or I2C and have their own bespoke protocol.
NeoPixels (also known as ws2812) and the digital humidity and temperature (DHT)

110 | Chapter 9: GPIO

line of sensors all use a 1-wire interface. These are just a couple of common examples
you may run across and the actual implementation details are unimportant since
MicroPython already has modules for both types of device. The point is that some‐
times you may encounter a peripheral where none of the standard protocols apply
and, if there’s no module already available, you may need to roll up your sleeves and
get bit banging to make the thing blink or go bloop.

Perhaps the most enjoyable aspect of programming GPIO pins with MicroPython is
that you’re close to the hardware. As Python programmers we’re used to working in
relatively abstract computing environments where Python collaborates with the oper‐
ating system to make things work. In contrast, as embedded developers, working in
MicroPython retains the closeness to the hardware while giving us a high-level,
expressive, and easy-to-use language that allows us to create working solutions in
only a fraction of the time it would take in other, lower-level languages. The lack of
abstractions and simplicity combined with the expressiveness of Python is a clue as to
why MicroPython is such an exceptional teaching tool: you’re close enough to the
hardware to be mucking about with how a computer actually works (rather than sit‐
ting on top of layers upon layers of abstractions), yet you have a powerful, flexible,
and (most importantly) easy-to-learn programming language. That the skills learned
with MicroPython are easily transferrable to “regular” Python is a testament to the
continuity of experience that the Python ecosystem provides.

Miscellaneous GPIO Techniques and Protocols | 111

1 For the purposes of this book, Adafruit’s Circuit Playground Express, the BBC micro:bit, and ESP8266/32-
based boards

2 Many cameras on mobile phones can detect infrared light. If you point a TV remote at such cameras and
press a button, you’ll see it flicker if viewed via the screen of your mobile phone.

CHAPTER 10

Networking

Due to the small size of the devices upon which MicroPython runs, there is no room
to add an ethernet socket. As a result, those devices that include capabilities for inter-
device communication do so wirelessly.1

There is something strangely satisfying about interacting at a distance: it feels like
magic. However, there’s something much better than magic going on: physics! How
such communication works is fascinating, and two types of communication will be
covered in this chapter: infrared (on the Circuit Playground Express) and radio (on
the micro:bit- and ESP8266/32-based devices).

Infrared (IR) communication is most commonly associated with television remote
controls: slabs of buttons to be poked and pressed while pointing the device at the TV.
Infrared works well over a short distance so long as there’s a line of sight between the
transmitter and receiver (hence the requirement that you point the remote at your
TV). We can’t see infrared light because its wave length is just below that of visible
light.2 There are many sources of infrared light in our environment: the sun, light
bulbs, candles, and even our own bodies (our bodies radiate most of their heat in the
infrared spectrum). To overcome the potential for interference from such ambient
sources of infrared light, when sending a signal it is common to modulate it. In this
instance, modulation means the signal is sent at a pre-agreed frequency, the most
common being 38 kHz (although other frequencies are used). Put simply, the infrared
transmitter blinks at 38,000 times per second. Such a signal is unlike other ambient

113

sources of infrared light and thus stands out to the receiver. The duration of the
modulated infrared signals is used to encode data.

Adafruit’s Circuit Playground Express has both an infrared transmitter and receiver
built into the board. Not only does this mean the device can communicate with your
TV or receive signals from your remote, but, as we shall see, it’s possible to send sig‐
nals between devices.

In contrast, radio-based interaction uses radio waves (a type of electromagnetic radia‐
tion, similar to visible light). These don’t require a line of sight and work around cor‐
ners, through walls, and over much further distances than infrared signals. A
property of radio waves (such as the amplitude, phase, or frequency) is modulated by
a transmitter in such a say that information is encoded and, thus, broadcast. When
radio waves encounter an electrical conductor (i.e., an aerial), they cause an alternat‐
ing current from which the information in the radio waves can be extracted and
transformed back into its original form.

The micro:bit and ESP8266/32 devices use radio communication in different ways.
Due to its educational roots, the micro:bit’s networking is so simple that an 11-year-
old would be able to construct a mental model for how it works. In contrast, the
ESP8266/32-based boards have an onboard TCP/IP stack and communicate via IEEE
802.11 standards (i.e., normal WiFi), making them useful for building Internet of
Things projects.

The hardware on both the BBC micro:bit and ESP32 is also capable of Bluetooth
communication. Both boards have hardware for Bluetooth Low Energy (BLE), with
the ESP32’s hardware also capable of standard Bluetooth. Unfortunately, we won’t
cover Bluetooth (but it’s important to know it could be a feature in the future). The
BLE implementation for the micro:bit takes up 12 Kb of the device’s 16 Kb of RAM
and more than 100 Kb of the 256 Kb of flash memory, leaving no room for MicroPy‐
thon to run. There are some brave souls working on an ultra memory-efficient BLE
stack for MicroPython on the micro:bit, although it remains to be seen if their work
will bear fruit.

Nevertheless, networking with all of the devices is fun simply because it feels like
magic. The remainder of this chapter is an overview with working examples to get
you started in the world of interconnetced devices, networking, IoT protocols, and
MicroPython.

114 | Chapter 10: Networking

3 Two durations of 8,000 microseconds are used because we detect durations when the signal changes from on
to off and vice versa. If the signal is currently in an “on” state, then a single off duration of 8,000 microseconds
is indistinguishable from no signal at all. By sending two durations, we can be certain the 8,000 microsecond
duration is explicit.

Circuit Playground Express Infrared
As mentioned, an infrared signal encodes data. It works by representing digital on
and off values by the presence (or absence) of infrared light modulated at 38 kHz. But
for the signal to mean anything, we must use a protocol for communication. There
are a plethora of protocols created by manufacturers of infrared devices. They gener‐
ally share a common modus operandi: the duration between changes in the signal is
used to represent data. Adafruit’s Tony DiCola has produced a fantastic video tutorial
demonstrating how this works and shows how to capture TV remote signals and
replay them, allowing your own embedded devices to control your TV.

This is similar to Morse code. Morse code defines how to send character-based mes‐
sages via on/off signals of long or short durations. Long durations are called “dah”
and are usually written as dashes (-), whereas short durations are called “dit” and
written as dots (.). By combining dashes and dots, Morse defines a way to send char‐
acters. For example, the letter “A” is defined as .- (dit dah). Characters are usually
separated by short pauses, sometimes written as a backslash (/).

In the following examples, I’ll use the Morse code to send a simple text-based mes‐
sage between two Circuit Playground Express boards. It has no practical use except as
a means of demonstrating how to send and receive infrared messages using Circuit‐
Python.

Obviously, the timing of the signal is important: we need to be able to tell a dot from
a dash. Furthermore, we need to be able to detect different characters, words, and the
beginning and end of the message. Therein lies the point of a protocol: to agree
beforehand on the details of how such things are represented by the signal. In this
case, some arbitrary timings can be used to represent all we need. If we take micro‐
seconds as a unit of measurement, then a “dit” can be represented by a duration of
1,000 microseconds and a “dah” by 2,000 microseconds. The boundary between char‐
acters can be represented by a duration of 4,000 microseconds and a word boundary
by two durations of 8,000 microseconds each.3

Given this simple protocol, here’s how to send “Hello World”:

import array
import pulseio
import board

Circuit Playground Express Infrared | 115

https://www.youtube.com/watch?v=TIbp7DzfOBM
https://www.youtube.com/watch?v=TIbp7DzfOBM

A lookup table of morse codes and characters.
MORSE_CODE_LOOKUP = {
 "A": ".-",
 "B": "-...",
 "C": "-.-.",
 "D": "-..",
 "E": ".",
 "F": "..-.",
 "G": "--.",
 "H": "....",
 "I": "..",
 "J": ".---",
 "K": "-.-",
 "L": ".-..",
 "M": "--",
 "N": "-.",
 "O": "---",
 "P": ".--.",
 "Q": "--.-",
 "R": ".-.",
 "S": "...",
 "T": "-",
 "U": "..-",
 "V": "...-",
 "W": ".--",
 "X": "-..-",
 "Y": "-.--",
 "Z": "--..",
 "1": ".----",
 "2": "..---",
 "3": "...--",
 "4": "....-",
 "5": ".....",
 "6": "-....",
 "7": "--...",
 "8": "---..",
 "9": "----.",
 "0": "-----",
}

def encode_message(msg):
 words = msg.split(' ')
 message_buffer = []
 for word in words:
 message_buffer.extend([8000, 8000,]) # Indicates a new word.
 for character in word:
 message_buffer.extend([4000]) # Indicates a new letter.
 for val in MORSE_CODE_LOOKUP[character]:
 if val == '-':
 message_buffer.extend([2000]) # Indicates a dah.
 else:

116 | Chapter 10: Networking

 message_buffer.extend([1000]) # Indicates a dit.
 if words:
 message_buffer.extend([8000, 8000,]) # Indicates end of message
 return array.array('H', message_buffer)

ir_led = pulseio.PWMOut(board.REMOTEOUT, frequency=38000, duty_cycle=2**15)
ir_out = pulseio.PulseOut(ir_led)
message = encode_message("HELLO WORLD")
ir_out.send(message)

The code is simple. Import the modules needed, create a lookup table for converting
characters into Morse code, define a function to convert a string containing the mes‐
sage into a memory-efficient array of unsigned short integers used by the PulseOut
class to send the signal, and then configure things to send the message.

The interesting functionality resides in the pulseio module. Since we’re modulating
the infrared signal, we use the PWMOut class to instantiate an object representing a
PWM signal, at the expected frequency (38 kHz) and duty cycle, that is emitted from
the pin representing the infrared transmitter (REMOTEOUT). The resulting object is
used to create a PulseOut class whose send method actually causes the signal to be
transmitted.

The encode function is rather basic. It splits the message into its constituent words
and then splits each word into its constituent characters and appends the resulting
durations (as specified in the protocol described earlier) to a list that’s converted into
the array used by the PulseOut class when sending the message.

Receiving the message is relatively similar in that there’s a lookup table to convert
Morse code to letters, and instead of using the pulsio module’s PulseOut class, the
receiving PulseIn class is used. However, there are some interesting complications
that need to be factored into this code:

import array
import pulseio
import board
import time

A lookup table of morse codes and characters.
MORSE_CODE_LOOKUP = {
 ".-": "A",
 "-...": "B",
 "-.-.": "C",
 "-..": "D",
 ".": "E",
 "..-.": "F",
 "--.": "G",
 "....": "H",
 "..": "I",

Circuit Playground Express Infrared | 117

 ".---": "J",
 "-.-": "K",
 ".-..": "L",
 "--": "M",
 "-.": "N",
 "---": "O",
 ".--.": "P",
 "--.-": "Q",
 ".-.": "R",
 "...": "S",
 "-": "T",
 "..-": "U",
 "...-": "V",
 ".--": "W",
 "-..-": "X",
 "-.--": "Y",
 "--..": "Z",
 ".----": "1",
 "..---": "2",
 "...--": "3",
 "....-": "4",
 ".....": "5",
 "-....": "6",
 "--...": "7",
 "---..": "8",
 "----.": "9",
 "-----": "0",
}

VALID_VALUES = (1000, 2000, 4000, 8000)

def normalise(raw):
 """
 A generator function that yields normalised items from the raw input.
 """
 for val in raw:
 rounded_val = round(val/1000) * 1000
 if rounded_val in VALID_VALUES:
 yield rounded_val

def get_character(tokens):
 """
 Given a list of tokens (Morse code dahs and dits represented as "-" and
 "."), return the related character or "?" if there's no match.
 """
 return MORSE_CODE_LOOKUP.get(''.join(tokens), "?")

def decode_message(normalised):

118 | Chapter 10: Networking

 """
 Given a source of normalised incoming values, returns a string
 representation of the message contained therein.
 """
 # Split the incoming normalised values into words, characters and tokens.
 words = []
 characters = []
 tokens = []
 for val in normalised:
 if val == 8000:
 # A new word.
 # Store away the old tokens and characters and reset state.
 if tokens:
 characters.append(get_character(tokens))
 if characters:
 words.append(''.join(characters))
 tokens = []
 characters = []
 elif val == 4000:
 # A new character.
 # Store away and reset the tokens of the previous character.
 if tokens:
 characters.append(get_character(tokens))
 tokens = []
 elif val == 2000:
 # A dah (represented as '-')
 tokens.append('-')
 elif val == 1000:
 # A dit token (represented as '.')
 tokens.append('.')
 return ' '.join(words).strip()

ir_in = pulseio.PulseIn(board.REMOTEIN, maxlen=512, idle_state=False)

while True:
 while len(ir_in) == 0:
 time.sleep(1)
 ir_in.pause()
 raw = [ir_in[i] for i in range(len(ir_in))]
 normalised = normalise(raw)
 msg = decode_message(normalised)
 if msg:
 print(msg)
 ir_in.clear()
 ir_in.resume()

The normalise function acts on the raw duration values recieved from the infrared
signal. Because of inaccuracies between the clocks on different devices, the incoming
durations won’t be exactly 1,000, 2,000, 4,000, or 8,000, but they’ll be very close. As a
result, normalise rounds the raw values to the nearest 1,000 microseconds. Given the

Circuit Playground Express Infrared | 119

normalised input, the decode_message function turns the durations into a string of
characters, thus reconstituting the text-based message contained therein.

The ir_in object is an instance of the PulseIn class instantiated with a reference to
the infrared receiver’s pin, an indication of the maximum number of durations to
store at one (in this case, 512) and a default idle state (upon starting to receive a new
message, the first recorded signal will be the opposite state from idle).

Since there’s no way to know when a message will arrive, an event loop is created that
checks if there are any incoming values (and if there are not, it sleeps for a second).
Upon receipt of a message, the infrared receiver is paused so the message isn’t
appended to while it’s being processed. The raw list is created by extracting all the val‐
ues from the ir_in object. These are normalised and decoded. Finally, if there’s a
message, it’s printed out (you’ll need to be connected to the REPL to see it), and the
ir_in buffer is cleared and resumed for reading new messages.

Using these techniques, it’s possible to create your own protocols or implement those
of others. Morse code probably isn’t a very good protocol to use in this respect, but
has been useful as a teaching aid since it demonstrates the duration-based nature of
infrared signals. While such infrared signals facilitate inter-device communication,
you’d be hard pressed to describe the end result as a robust computer network. For
that you’ll need to use the radio capabilities of the micro:bit and ESP8266/32-based
devices.

The micro:bit Radio
The radio hardware on the micro:bit makes available a custom wireless layer that is
both simple to think about and uses very little memory and few resources. These fea‐
tures are exposed in MicroPython on the micro:bit as the radio module.

Conceptually, the radio module is very simple. Imagine you are the member of a
children’s gang, each of whom has a basic walkie-talkie. Everyone agrees beforehand
the channel number to which their walkie-talkies are to be tuned. Once out and
about, if you press the broadcast button and speak, everyone on the same channel
will receive your message. Children intuitively understand this network topology
simply because they use it so often themselves!

At a more technical level, messages are of a certain configurable length that can be up
to 251 bytes long. The default length is 32 bytes. Incoming messages are put into a
queue of configurable size. The default queue length is three, and the larger the
queue, the more RAM is used. If the queue is full, new messages are ignored. Mes‐
sages are broadcast at a certain power level in a range of zero (weakest) to 7 (stron‐
gest). The default value is 6 and more power means greater range, but this will use up
batteries more quickly. The rate of throughput (i.e., speed of delivery) can be one of
three pre-determined settings: 250,000 bits, 1 MB, or 2 MB a second. The default is

120 | Chapter 10: Networking

1 MB per second. Messages are broadcast and received on a preselected channel
(numbered from zero to 100). In addition, messages can be filtered by address and
group. The address is analogous to a house number, and group is like a named recipi‐
ent at the specified address.

The radio API allows you to configure all of the parameters mentioned, as well as
send and receive bytes. As a convenience for children, the radio module also makes it
easy to send and receive strings. Use bytes to work with arbitrary data, although
strings are remarkably flexible for many purposes.

Since the radio draws power, you have to explicitly turn it on to send or receive mes‐
sages. If your application is in a fire-and-forget situation, this is handy since you only
need to switch the radio on to send a message. Switch it off at all other times to con‐
serve power. Since this is a child-friendly API, the two functions are called
radio.on() and radio.off().

Use the radio.config(**kwargs) function to update the parameters, including the
following:

length (default, 32)
Defines the maximum length of a message in bytes. The upper limit is 251.

queue (default, 3)
Specifies the number of message to store in the message queue.

channel (default, 7)
Defines the arbitrary channel to which the radio is tuned.

power (default, 6)
Indicates the strength of the broadcast signal.

address (default, 0x75626974)
An arbitrary name expressed as a 32-bit address used to filter incoming packets.

group (default, 0)
An 8-bit value (0-155) used with address when filtering messages.

data_rate (default, 1 MB)
Indicates the speed at which data throughput takes place.

If you find the radio has got into a bad state, you can call radio.reset() to return it
to the sensible default settings.

Assuming the radio is on, to send a string simply use radio.send("Hello,
World!"). Receiving a string is equally as simple: just do something like msg =
radio.receive() to return the first message in the queue and to remove it from the

The micro:bit Radio | 121

queue to make way for subsequent messages. If the message queue is empty, then
radio.receive() returns None.

Sending and receiving bytes is equally simple. Simply, radio.send_bytes(message)
(where message contains bytes) and message_bytes = radio.receive_bytes(). Just
like the string-based function, radio.receive_bytes() returns None if the message
queue is empty; otherwise, it returns the first message in the queue and removes it to
make space for new messages. If you are using buffers in your application, you also
have the option to use radio.receive_bytes_into(buffer). In this case, the next
incoming message from the message queue is copied into the buffer object, trim‐
ming the end of the message if necessary. In order to help detect the state of the mes‐
sage queue, this function returns None if there are no pending messages or, if a
message was received, an integer representing the length of the incoming message.

Let’s put this together with a simple example:

from microbit import *
import radio

radio.config(channel=42)
radio.on()

while True:
 sleep(20)
 if button_a.was_pressed():
 radio.send("Hello")
 msg = radio.receive()
 if msg:
 display.scroll(msg, 80, wait=False)

The script begins by changing the radio configuration to channel 42 before powering
up the radio. Next comes an infinite event loop. Each iteration of the event loop
checks two things:

1. If button A was pressed, send the message “Hello”.
2. If a new message is received, scroll it across the display.

Notice how close the description of the event loop is to the way the Python code is
written. This pattern of sending messages when a certain event happens and checking
for new messages at each iteration of the event loop is at the core of all applications
that use the micro:bit’s radio.

While this simple application is fun from an illustrative point of view, a far more use‐
ful application demonstrates how easy it is to create a complicated program that
makes a collection of devices to work as a peer-to-peer mesh network.

Imagine you have a micro:bit stuck to the wall next to the light switch in every room
of your house. They can be used as a house broadcast system (for example, to save

122 | Chapter 10: Networking

you the effort of hollering up the stairs when dinner is ready). Each micro:bit is
named after its location (“Kitchen”, “Bathroom”, “Lounge”, and so on) and, depending
on the room, has a list of pre-programmed messages to send from the specified room.
I imagine you definitely want to have messages like “Yes” and “No” in the list of pre-
programmed messages for all rooms, although “We’ve run out of toilet roll” only
works if it’s the bathroom-based micro:bit that has sent the message.

Pressing button “A” should enumerate the available messages (and the current mes‐
sage should be scrolled across the display to confirm the message has changed).
Pressing button “B” should send the currently selected message and scroll the sent
message on the sending micro:bit as a confirmation.

The message should also indicate the originating micro:bit so that everyone else can
tell who sent the message.

Upon receiving a new message, the sender and content of the message should scroll
across the display. Furthermore, because some micro:bits may be out of range of the
originating device, the recipient device should immediately rebroadcast the message
so everyone in the mesh of devices gets to hear about it. Of course, with all the devi‐
ces rebroadcasting messages, there needs to be some way to mitigate the echo effect
(where devices end up infinitely rebroadcasting the rebroadcasted messages). This is
achieved with a simple message cache. Every message received becomes a key with an
associated timestamp value. Messages in this cache are cleaned out after an arbitrary
period of time. So, if the message exists in the cache, then it’s been seen recently and
should be ignored (thus stopping the infinite echo problem). This is a common pat‐
tern in peer-to-peer mesh networks where all members need to get a message and not
every member of the network is connected, so devices automatically pass on messages
to any other devices that are listening.

Here’s one way to achieve this, as copiously annotated Python:

import radio
from microbit import *

radio.config(length=64)
radio.on()

device_name = "Lounge"

messages = [
 "TV is free.",
 "Need logs for the fireplace.",
 "Fireplace needs cleaning.",
 "Lovely log fire!",
 "Nibbles and snacks available.",
 "Yes",
 "No",
]

The micro:bit Radio | 123

message_cache = {}
cache_lifetime = 1000 * 5 # 5 seconds

position = 0

while True:
 sleep(20)
 # Sweep and clean the cache of stale messages.
 now = running_time()
 to_delete = []
 # Sweep.
 for key, timestamp in message_cache.items():
 # Check the age of the cached message.
 if now > timestamp + cache_lifetime:
 to_delete.append(key)
 # Clean the cache of out stale messages.
 for stale_message in to_delete:
 del message_cache[stale_message]
 # Cycle through the available messages.
 if button_a.was_pressed():
 position += 1
 # Skip back to the beginning if we reach the end.
 if position == len(messages):
 position = 0
 # Preview the newly selected message.
 display.scroll(messages[position], 50, wait=False)
 # Send the currently selected message.
 if button_b.was_pressed():
 # Message format is "sender:content".
 radio.send('{}:{}'.format(device_name, messages[position]))
 # Check for and display incoming message, rebroadcast if required.
 msg = radio.receive()
 if msg:
 if msg not in message_cache:
 # This is a new message, so store it in the cache.
 message_cache[msg] = running_time()
 # Rebroadcast it.
 radio.send(msg)
 # Display it in a friendly way.
 sender, message = msg.split(':')
 display.scroll('{} says: {}'.format(sender, message), 50,
 wait=False)

After configuring the length of messages to be 64 bytes and switching on the radio,
the script defines a name (to indicate its location) and a list of potential messages it
could send. A clean cache for the messages is created, and a cache lifetime is defined
in milliseconds. Setup completes with the initial message being that in position 0 of
the message list (i.e., “TV is free.”).

124 | Chapter 10: Networking

Next comes the event loop. This section is commented and demonstrates how the
cache is maintained, how button events are handled, and how incoming messages are
processed. It’s all very simple and, given plenty of devices, rather fun.

Other devices will have a different version of the code. For example, the bathroom
would revise the device_name and messages list to something along the lines of:

device_name = "Bathroom"

messages = [
 "Need more toilet roll.",
 "Run out of soap.",
 "Blocked drain.",
 "Missing toothbrush.",
 "The shower is free.",
 "Yes",
 "No",
]

I imagine the kitchen’s version would look like this:

device_name = "Kitchen"

messages = [
 "Food is ready!",
 "Does anyone want a cup of tea?",
 "The dishwasher is finished.",
 "We need more milk.",
 "The table needs setting.",
 "Yes",
 "No",
]

Can you think of ways to improve the script? In the next chapter we will look at
sound and music, so perhaps you could extend the script with speech or musical sig‐
nals. Alternatively, a good rule of thumb is never to trust user-generated input (such
as messages from other micro:bits). How might you protect your devices from badly
formed messages or interference from other devices that are running a completely
different application but which are broadcasting in the area?

Being able to coordinate many micro:bits is a lot of fun; and given the micro:bit’s edu‐
cational heritage, I also want to bring your attention to a simple application that
works well in the classroom. It provides rather an interesting effect that beginner cod‐
ers will enjoy: fireflies.

The micro:bit Radio | 125

A firefly is a sort of bug that uses bioluminescence to signal to its friends. It’s relatively
simple to turn a group of micro:bits into fireflies if they all run this code:

import radio
import random
from microbit import display, Image, button_a, sleep

Create the "flash" animation frames. Can you work out how it's done?
flash = [Image().invert()*(i/9) for i in range(9, -1, -1)]

radio.on()

while True:
 # Button A sends a "flash" message.
 if button_a.was_pressed():
 radio.send('flash') # a-ha
 # Read any incoming messages.
 incoming = radio.receive()
 if incoming == 'flash':
 # If there's an incoming "flash" message display
 # the firefly flash animation after a random short
 # pause.
 sleep(random.randint(50, 350))
 display.show(flash, delay=100, wait=False)
 # Randomly re-broadcast the flash message after a
 # slight delay.
 if random.randint(0, 9) == 0:
 sleep(500)
 radio.send('flash') # a-ha

Once again, the code contains comments to explain what is going on. Essentially,
clicking button “A” on a micro:bit sends out a “flash” signal. Any recipient has a
chance that it may rebroadcast the “flash” signal itself, thus propagating the signal
over time. If a device receives a signal, it animates a flash on its display. The end result
is something that looks like real-life fireflies signalling to each other. Given that a mil‐
lion of these devices have been handed out so that every 11-year-old in the UK has
one, it’s no stretch to imagine a class of 30 children enjoying such a spectacle. I also
imagine this project would work well in a dark and dingy disco. Instead of pressing
button “A”, the “flash” message could be activated by a “shake” gesture if the device
was worn on all the dancers’ wrists. It would be quite a sight!

A final aspect of micro:bit radio is how to facilitate communication with non-
micro:bit devices. The simple answer is you should use a listening microbit that’s
plugged into your computer. The code on this device simply listens for incoming
messages and sends them to your computer via the USB serial connection (UART)
and reads messages from your computer and broadcasts them to others in range. The
following code demonstrates what I mean:

from microbit import *
import radio

126 | Chapter 10: Networking

4 Sometimes you may find three “spare” bytes at the start of a radio message. These will always be, 1, 0, 1.
They only occur if you mix send (that deals with strings) and receive_bytes (that deals with bytes). They are
an artefact from making MicroPython compatible with a protocol from other radio-using platforms that tar‐
get the micro:bit. Since we’re only interested in the content of the message, it is safe to strip these out.

radio.on()

while True:
 radio_msg = radio.receive_bytes()
 if radio_msg:
 uart.write(radio_msg)
 pc_msg = uart.read()
 if pc_msg:
 radio.send_bytes(pc_msg)

This is very simple code that should be easy to modify to your own ends.4

It is easy to read messages from USB serial in two ways: just connect to the device as if
you were connecting to the REPL (the REPL uses USB serial to send and receive char‐
acters from your computer), or write a script so you can programmatically react to
the incoming messages from the micro:bit. Here’s an example script that uses the
pySerial package to do just that:

"""
Listen to a connected micro:bit for incoming messages to which you can react
as needs apply.
"""
from serial.tools.list_ports import comports as list_serial_ports
from serial import Serial

def find_microbit():
 """
 Finds the port to which the device is connected.
 """
 ports = list_serial_ports()
 for port in ports:
 # Use the vendor and product ID to identify the micro:bit.
 if "VID:PID=0D28:0204" in port[2].upper():
 return port[0]
 return None

def get_serial():
 """
 Detect if a micro:bit is connected and return a serial object to talk to
 it.
 """
 port = find_microbit()

The micro:bit Radio | 127

5 See, for example, Martin O’Hanlon’s X-Wing in Minecraft controlled by a micro:bit.

 if port is None:
 raise IOError('Could not find micro:bit.')
 return Serial(port, 115200, timeout=1, parity='N')

serial = get_serial() # create the serial connection to the micro:bit

Keep listening for bytes from the device. If any are received print them.
while True:
 msg = serial.read_all() # Remember, msg will be bytes not a string.
 if msg:
 # At this point you could check the content of msg to react in more
 # complicated ways than just printing it. For example, you could use
 # serial.write(a_response) to re-broadcast a message from the
 # micro:bit.
 print(msg)

Using this method I have seen the micro:bit turned into a remote-control, game-pad-
like device.5

The micro:bit’s networking capabilities offer a lot of potential, especially in an educa‐
tional setting. However, to be truly Internet of Things buzzword-compliant, we need
to be able to connect to the internet. That means WiFi, and that means the ESP8266-
and ESP32-based boards.

ESP8266/32 WiFi
It’s important to remember that the following code is for ESP8266
boards. The ESP32 port of MicroPython is still in active develop‐
ment, although these examples should work since there should be a
consistent API between the two implementations.

By connecting a device to the internet, a new world opens up to you: the combined
computing power of everything connected to the cloud, a plethora of useful APIs,
and the ability to send and receive messages outside your current location. This is
exciting: one of the magical attributes of “enchanted” objects is their ability to com‐
municate with distant actors, services, and devices; a simple, classic example being a
glowing orb that indicates the weather (the enclosed LEDs change colour depending
upon the result of a remote call to a weather service for the weather forecast of some
arbitrary area).

128 | Chapter 10: Networking

https://www.youtube.com/watch?v=59KqWVwj_Cc

6 There are five possible values for authmode: 0 (open), 1 (WEP), 2 (WPA-PSK), 3 (WPA2-PSK), and 4 (WPA/
WPA2-PSK). There are two modes for the hidden flag: 0 (visible) and 1 (hidden). For more information, see
the relevant MicroPython documentation.

The first step is to get connected. There are two ways to do this: by connecting the
board as a station (client) to an existing WiFi network or by using the board as an
access point so other devices can connect to a WiFi network provided by your device.
Both approaches are achieved via the network module as demonstrated in the follow‐
ing REPL interaction:

>>> import network
>>> station = network.WLAN(network.STA_IF)
>>> access_point = network.WLAN(network.AP_IF)
>>> station.active()
False
>>> station.active(True)
>>> station.scan()
[(b'WiFi Network Guest Access', b'61\xc4y\xfd?', 6, -58, 4, 0),
(b'Wifi Network', b'41\xc4y\xfd?', 6, -57, 4, 0)]
>>> access_point.active()
True
>>> access_point.ifconfig()
('192.168.4.1', '255.255.255.0', '192.168.4.1', '0.0.0.0')
>>> access_point.ifconfig(dns='208.67.222.222')

When instantiating a WLAN class, the network interface name should be specified. Two
such objects were created in the preceding example: the station object with the
STA_IF (station interface) name, and the access_point object with the AP_IF (access
point interface) name.

Since the station doesn’t know how to connect to any networks, it begins in an inac‐
tive state. After activation, it’s possible to get a list of currently available networks
expressed as tuples containing the SSID (network name), BSSID (the MAC address of
the access point providing the network), channel, RSSI (signal strength), authentica‐
tion mode, and hidden flag.6

Since the access_point provides a WiFi network to which others may connect, it
starts in an active state. To learn what the IP-level network parameters are for the
access point, call ifconfig. It returns the IP address, subnet mask, gateway, and DNS
server. If you need to change any of these, just call the same method but pass in a
named value (any of ip, subnet, gateway, or dns) as shown in the example.

When the device acts as an access point, it will show up with an SSID like
MicroPython-121ce1. As a quick Google will tell you, the default password is micro
pythoN (note the capital “N” at the end).

ESP8266/32 WiFi | 129

http://bit.ly/micropython-available-wireless

The first thing you should do is configure your WiFi so that you change the connec‐
tion settings for your device if it is acting as an access point, or if you need your
device to connect to a third-party WiFi.

To configure the device as an access point, you should use the config method as
demonstrated in this continuation of the REPL session:

>>> access_point.config('essid')
'MicroPython-121ce1'
>>> access_point.config('authmode')
4
>>> access_point.config(essid='new_net_name', password='new_password')
>>> access_point.config('password')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ValueError: unknown config param

The config method is used to query the value of a setting by passing in the setting
name as a string. Alternatively, it is possible to update the setting by using it as a
named argument (as when the network name and password were updated in the pre‐
vious example). As the example shows, MicroPython won’t reveal your password. It
knows about the following parameters to define the settings for your access point net‐
work:

mac

MAC address as bytes.

essid

The WiFi access point’s network name, as a string.

channel

WiFi channel as integer.

hidden

A boolean to indicate if the network is hidden.

authmode

The supported mode of authentication as enumerated in a previous footnote.

password

The password as a string.

You should update the network name (essid) and password as soon
as possible when you’re running the device as an access point.

130 | Chapter 10: Networking

To configure your device to connect to an available WiFi network, ensure that it is
active and then call the connect method:

>>> station.active(True)
>>> station.connect('Network Name', 'password123')
>>> station.ifconfig()
('192.168.178.190', '255.255.255.0', '192.168.178.1', '192.168.178.1')

Once connected, the ifconfig method tells you the device’s IP address.

MicroPython is helpful by remembering such configurations for both station and
access point modes of connection after you restart the device. In other words, you
need only do this once. Upon restart, the device will attempt to resume or reconnect,
given the status of the device when it was switched off. It is easy to disable the station
or access point connections if you no longer need them:

>>> access_point.active(False)

Alternatively, you may just need to disconnect:

>>> access_point.disconnect()

If you ever need to check the status of the connections, you have two options. The
isconnected method will return a boolean indication of the connection state; if the
device is acting as a station, it will return True if the device is connected to a WiFi
network and has an IP address; if the device is acting as an access point, it will return
True if a station is connected to the device; otherwise, the result is False. Alterna‐
tively, the status method returns a list of possible states that the wireless connection
could be in:

STAT_IDLE

No connection and no activity.

STAT_CONNECTING

Connecting in progress.

STAT_WRONG_PASSWORD

Failed due to incorrect password.

STAT_NO_AP_FOUND

Failed to connect because no access point replied.

STAT_CONNECT_FAIL

Failed due to other problems.

STAT_GOT_IP

Connection successful.

ESP8266/32 WiFi | 131

Once connected, it’s time to have some fun over the internet. When the ESP8266 was
first created, Damien attended a session of the London Python Code Dojo, a commu‐
nity group where “social coding” takes place, friends are made, and people learn from
each other. He brought along some devices, gave a quick overview of the board, its
capabilities, and how to connect to the network. All the attendees were encouraged to
play. At the end, everyone came together to show what they’d managed to achieve.
The example I’m going to use to demonstrate simple network connectivity was first
hacked together by attendees at the dojo and later refined by Damien. Perhaps most
importantly, all the code in the example will work with “regular” Python, thus dem‐
onstrating that MicroPython really is a comprehensive port of Python 3 in all its
glory.

Python has a socket module with which one creates connections over the internet.
MicroPython also has a version of this module, and we can use it to reach out to
servers on the internet. Given a domain name, it’s possible to get the associated IP
address, create a socket, connect the socket to the remote IP address, and print out all
the data received from the remote server.

The following example involves downloading data in a REPL session and assumes
that you’re connected to a WiFi network with internet access:

>>> import socket
>>> addr_info = socket.getaddrinfo("towel.blinkenlights.nl", 23)
>>> addr_info
[(2, 1, 0, '', ('94.142.241.111', 23))]
>>> server_addr = addr_info[0][-1]
>>> s = socket.socket()
>>> s.connect(server_addr)
>>> while True:
... data = s.recv(500)
... print(str(data, 'utf8'), end='')
...

Notice how the socket module’s getaddrinfo method is used to turn a domain name
into an IP address and how such information becomes the tuple server_addr. Armed
with this information, a new socket is instantiated with a connection made using the
server_addr. Finally, an infinite loop ensures that we receive 500 bytes of data at a
time from the remote server and print this to the REPL session.

At this point you should be watching ASCII-mation Star Wars (Figure 10-1).

132 | Chapter 10: Networking

https://en.wikipedia.org/wiki/ASCII_art#Animated_ASCII_art

Figure 10-1. A screenshot of a MicroPython REPL session displaying the ASCII-mation
version of Star Wars.

It is also possible to send data: create a socket as before, but use the send method to
send bytes across the network. For example, here’s how to read the home page of
MicroPython via an HTTP GET request:

>>> import socket
>>> addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
>>> s = socket.socket()
>>> s.connect(addr)
>>> s.send(b'GET / HTTP/1.1\r\nHost: micropython.org\r\n\r\n')
>>> data = s.recv(1000)
>>> s.close()

At this point the data object will contain the HTML (expressed as bytes) for the root
of the website at micropython.org.

By now you are probably wishing that the popular requests module was available for
MicroPython. It’s advertised as, “HTTP for Humans” and makes it exceptionally easy
to make web-based requests in Python code. Furthermore, since many of the use
cases for the requests module are to API endpoints that respond to or reply with
JSON data, it would be pretty helpful if there were a port of Python’s json module,
too.

It turns out that the urequests (micro requests) module for MicroPython mimics
much of the core functionality of the popular requests module and is already built
into the ESP8266 port of MicroPython, along with the standard json module. As a
result, the previous seven lines of Python can be reduced to:

>>> import urequests as requests
>>> response = requests.get('http://micropython.org/')

ESP8266/32 WiFi | 133

http://docs.python-requests.org/en/master/

Since most programatic interactions over HTTP are with endpoints that use JSON,
it’s relatively trivial to use fun services such as the Star Wars API hosted at http://
swapi.co/:

>>> import urequests as requests
>>> response = requests.get('http://swapi.co/api/people/1/')
>>> dir(response)
['text', '__init__', '__qualname__', 'close', 'content', 'json', '__module__',
'encoding', 'raw', 'reason', '_cached', 'status_code']
>>> person = response.json()
>>> person['name']
'Luke Skywalker'
>>> person['homeworld']
'http://swapi.co/api/planets/1/'
>>> person['films']
['http://swapi.co/api/films/6/', 'http://swapi.co/api/films/3/',
'http://swapi.co/api/films/2/', 'http://swapi.co/api/films/1/',
'http://swapi.co/api/films/7/']

The response object has the expected json method to return a Python dictionary
that can be interrogated in the usual way. Since the Star Wars API is read only, we’ll
use the JSON placeholder service to demonstrate sending data via HTTP:

>>> import urequests as requests
>>> import json
>>> data = json.dumps({'hello': 'world'})
>>> url = 'http://jsonplaceholder.typicode.com/posts'
>>> response = requests.post(url, data=data)
>>> response.json()
{'id': 101}

While it’s fun to send messages and request data, it is also sometimes necessary to
respond to incoming messages. While MicroPython has a version of Python’s
asyncio module, it’s not currently a part of the ESP8266 port because of space and
memory constraints. However, it is relatively simple to use Python’s socket module
to create a basic web server that returns a JSON representation of the digital state of
all the device’s GPIO pins:

import machine
import socket
import json

template = """HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: {length}
Server: MicroPython

{json}"""

pins = [machine.Pin(i, machine.Pin.IN) for i in (0, 2, 4, 5, 12, 13, 14, 15)]
addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]

134 | Chapter 10: Networking

http://swapi.co/
http://swapi.co/

s = socket.socket()
s.bind(addr)
s.listen(1)

print('listening on', addr)

while True:
 cl, addr = s.accept()
 print('client connected from', addr)
 cl_file = cl.makefile('rwb', 0)
 while True:
 line = cl_file.readline()
 if not line or line == b'\r\n':
 break
 status = {str(p): p.value() for p in pins}
 data = json.dumps(status)
 response = template.format(length=len(data), json=data)
 cl.send(response)
 cl.close()

This example is an excellent template for other simple ESP8266-based servers. Apart
from the pin-related lines, it’s also just standard Python sockets programming. After
setting up a socket to listen for incoming connections on port 80, the server enters an
infinite loop that waits to process incoming connections. After reading the request
until a blank line (it’s at this point you may want to process the content of each line
received to work out, for example, details of the request headers), the status of the
pins is obtained, turned into a data string containing a JSON representation of the
status, turned into a response by inserting the data into the HTTP response tem
plate, sent to the requestor, and ends by closing the client connection.

From a regular Python REPL, the client would see something like this:

>>> import requests
>>> esp8266_url = 'http://192.168.178.190/'
>>> response = requests.get(url)
>>> response
<Response [200]>
>>> from pprint import pprint
>>> pprint(response.json())
{'Pin(0)': 1,
 'Pin(12)': 1,
 'Pin(13)': 1,
 'Pin(14)': 1,
 'Pin(15)': 0,
 'Pin(2)': 1,
 'Pin(4)': 1,
 'Pin(5)': 1}

That should be familiar to many developers who have to consume common web-
based APIs, endpoints, and web services.

ESP8266/32 WiFi | 135

Given MicroPython’s embedded context, and the constrained nature of the devices
upon which it runs, we will end this chapter with a quick look at the Message Queue
Telemetry Transport (MQTT), a data transmission protocol common in the embed‐
ded world.

MQTT
The Message Queue Telemetry Transport (MQTT) is a lightweight publish/subscribe
(pub/sub) messaging protocol. Devices (called clients) connect to a central server
(called a broker) and subscribe to topics they are interested in. Clients may also pub‐
lish messages to topics. Many clients may subscribe to a topic, and any messages pub‐
lished to the topic will be aggregated to the subscribers. The broker and MQTT
protocol act as the common mechanism through which devices may connect and
communicate. In this way, your ESP8266 device may communicate via a topic with
any other MQTT-connected devices such as smart-home sensors and other Internet
of Things devices connected to an MQTT broker.

MicroPython devices will act as clients in an MQTT network.
A popular cross-platform open source broker is Mosquitto. I’ve
seen it used effectively on a Raspberry Pi acting as a (well-hidden)
broker for home automation projects.
Mosquitto is packaged for all major operating systems. You should
consult the project’s documentation for installation and configura‐
tion instructions.

There is no need to configure a topic; simply publishing a message to a topic will do.
Topics use a naming convention similar to the path of a URL: there is a hierarchy
with “/” (slash) used as the separator. It means topics can be organised under com‐
mon themes, and naming conventions for new topics can evolve. For example, your
devices could use the following naming convention for topic names concerning tem‐
perature measurements: sensors/DEVICE_NAME/temperature. The device would pub‐
lish messages to a topic where the DEVICE_NAME is replaced with some unique
identifier.

Clients subscribe to specific topics in order to receive any messages published to the
topic. Alternatively, clients can use two wildcards (+ and #) to subscribe to all topics
that match the wildcards.

The + wildcard is used to match any single level of a hierarchy. For example,
sensors/+/temperature would specify a subscription to temperature readings on all
devices, no matter what their name (hence the wildcard).

136 | Chapter 10: Networking

http://mosquitto.org/

The # wildcard matches all the remaining levels of a hierarchy and therefore must
always be used as the final character of a subscription specification. For example, a
subscription to sensors/+/# would result in messages from all devices for all types of
reading (not just temperature).

Just because a device is supposed to be connected to a network, it does not mean the
network, connection, or device is working correctly. As a result, MQTT defines three
levels of quality of service (QoS) that determine how hard a client or broker will try
to ensure that a message gets through. Higher levels of QoS are more reliable, but
have higher resource requirements:

• 0: the message is delivered just once with no confirmation.
• 1: the message is delivered at least once with a confirmation required.
• 2: the message is delivered just once but with a four-step handshake to ensure a

reliable connection.

Messages can be sent and subscriptions made at any level of QoS. In other words, the
client chooses the maximum level of QoS it will receive. For example, if client A pub‐
lishes a message to a topic at QoS 2, then client B, who is subscribed to the topic at
QoS 0, will only have messages delivered with QoS 0 despite the original message
being published at QoS 2. Furthermore, if client A is subscribed to the topic at QoS 2,
and client B publishes a message at QoS 0, then client A will only receive it at QoS 0.
The QoS level of the message doesn’t change to the QoS level of the subscription if the
subscription’s QoS is higher.

A message can be set to be retained by the broker. It will be kept even if all the cur‐
rently connected subscribers have received it. However, if a new subscription is made
to the topic of the retained message, then it will be sent to the client.

When connecting, a client sets a “clean session” or “clean start” flag. If set to false,
then the session is set to be durable: if the client disconnects, any subscriptions will be
retained, and subsequent QoS 1 or 2 messages will be stored until it manages to
reconnect. If the “clean session” is true, all subscriptions will be removed when the
client disconnects.

Finally, and rather morbidly, MQTT has the notion of a “will”. When a client con‐
nects to a broker, it can send it a will. The will is a special message, with an arbitrary
topic, QoS level, and retainment status just like any other message. It won’t be sent
unless the client unexpectedly disconnects from the broker.

The ESP8266 port of MicroPython contains a small and simple MQTT module called
umqtt (micro MQTT). It supports most of the MQTT features, including publishing
and subscription via a single client object. The handling of messages from subscribed
topics is done by setting a callback.

To keep the code size small, only QoS 0 and 1 are supported in umqtt.

MQTT | 137

A connection with a broker is represented by an instance of the MQTTClient class. It
provides all the methods needed to work with the broker. The following example
demonstrates how to publish to a topic (in this case, recording when the device’s
“FLASH” button is pressed):

import time
import ubinascii
import machine
from umqtt.simple import MQTTClient

button = machine.Pin(0, machine.Pin.IN)

broker_address = '192.168.1.35'
client_id = 'esp8266_{}'.format(ubinascii.hexlify(machine.unique_id()))
topic = b'button'

client = MQTTClient(client_id, broker_address)
client.set_last_will(topic, b'dead')
client.connect()

while True:
 while True:
 if button.value() == 0:
 break
 time.sleep_ms(20)
 client.publish(topic, b'toggled')
 time.sleep_ms(200)

client.disconnect()

Things to note about this example are the way the client_id is created from a hexli‐
fied version of the machine’s unique_id, the topic and message are represented as
bytes, and a session is started and stopped by calls to connect and disconnect. It’s
possible to set the clean session with a clean_session=False argument for the con
nect method (it defaults to True).

Publication of a message on a topic is achieved by the publish method that takes the
topic and message bytes. Additional optional arguments are retain (that defaults to
False) and qos (that defaults to 0 but can be set to 1—remember QoS 2 isn’t sup‐
ported for space saving reasons).

The set_last_will method has exactly the same signature as the publish method.

Subscription to a topic is also very easy:

import time
import ubinascii
import machine
from umqtt.simple import MQTTClient

138 | Chapter 10: Networking

def callback(topic, message):
 """
 Received messages are processed by this callback.
 """
 print((topic, message))

broker_address = '192.168.1.35'
client_id = 'esp8266_{}'.format(ubinascii.hexlify(machine.unique_id()))
topic = b'button'

client = MQTTClient(client_id, broker_address)
client.set_callback(callback)
client.connect()
client.subscribe(topic)

while True:
 client.wait_msg()

The script contains many similarities to that used for publishing. Differences include
the definition of a callback function that does something with the topic and message
it receives, the use of the set_callback method to connect the callback function to
the client’s subscriptions, the subscribe method to set a subscription to the specified
topic, and the blocking wait_msg method that sits in a loop constantly polling for
updates. This last method can be replaced with the nonblocking check_msg method.
Use the latter if you have any foreground processing to do while the polling takes
place. It’s also possible to set a qos argument in the subscribe method (either 0 or 1).

MQTT | 139

CHAPTER 11

Sound and Music

Sound is an intriguing medium. We use it to signal (such as the ringing of a mobile
phone), create art (with music) and communicate meaning (through speech). If a
device can make sound, it can signal, make music, and maybe even speak to us.
There’s also something deeply satisfying in making things go “bloop”.

Three of the devices are immediately able to create sound. The Circuit Playground
Express has a built-in speaker, the PyBoard has an AMP audio skin and the micro:bit
comes with modules for making sounds if you attach speakers to it via the GPIO pins.

This chapter explores all the ways in which you can make sounds, music, and speech
with MicroPython.

Bleeps and Bloops
The speaker on the Circuit Playground Express, like all things that produce sound,
needs to create vibrations in the air. The simplest way to do this is to switch the buz‐
zer on and off very quickly, thus making it vibrate to create a sound whose pitch is
determined by how quickly the vibrations are oscillating. The following code demon‐
strates how to make the buzzer go “bloop” for two seconds:

import audioio
import array
import time
import digitalio
from board import SPEAKER, SPEAKER_ENABLE

Switch on the speaker for output.
speaker_enable = digitalio.DigitalInOut(SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

duration = 2

141

length = 8000 // 1760
wave = array.array("H", [0] * length)
wave[0] = int(2 ** 15 - 1)

with audioio.AudioOut(SPEAKER, wave) as speaker:
 speaker.play(loop=True)
 time.sleep(duration)
 speaker.stop()

By changing the duration, you change the length of time you hear the “bloop”. Sound
production happens in the final four lines where a speaker object is used to play a
repeated waveform while the board sleeps for duration seconds after which the
speaker.stop method makes it silent again.

Armed with such a simple source of “bloops”, it’s very easy to make something musi‐
cally useful like a metronome (to which I’ve added NeoPixels to make sure the device
flashes in time with the beat). Use the left and right buttons to change the tempo of
the metronome, and press both to reset the device to the default tempo of 120 beats
per minute (BPM):

import neopixel
import audioio
import digitalio
import array
import time
from board import *

np = neopixel.NeoPixel(NEOPIXEL, 10, auto_write=False)
left = digitalio.DigitalInOut(BUTTON_A)
left.pull = digitalio.Pull.DOWN
right = digitalio.DigitalInOut(BUTTON_B)
right.pull = digitalio.Pull.DOWN

length = 8000 // 1760
wave = array.array("H", [0] * length)
wave[0] = int(2 ** 16 - 1)

Switch on the speaker for output.
speaker_enable = digitalio.DigitalInOut(SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

speaker = audioio.AudioOut(SPEAKER, wave)
bleep_duration = 0.02
default_tempo = 0.48
tempo = default_tempo
tempo_change = 0.02

while True:
 if left.value and right.value:
 tempo = default_tempo
 elif left.value:

142 | Chapter 11: Sound and Music

 tempo = min(tempo + tempo_change, 2.98)
 elif right.value:
 tempo = max(tempo - tempo_change, 0.02)
 np.fill((0, 255, 0))
 np.write()
 speaker.play(loop=True)
 time.sleep(bleep_duration)
 speaker.stop()
 np.fill((0, 0, 0))
 np.write()
 time.sleep(tempo)

The code causes the device to simultaneously “bloop” and flash, then it sleeps for a
duration whose value can be increased or decreased on button presses and repeats ad
infinitum. The “bloop” can be extracted from the script with the following stand-
alone bloop function (put this into a module called music.py on the Circuit Play‐
ground Express’s file system):

import audioio
import digitalio
import array
import time
from board import *

Switch on the speaker for output.
speaker_enable = digitalio.DigitalInOut(SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

def bloop(pitch, duration):
 length = 8000 // pitch
 wave = array.array("H", [0] * length)
 wave[0] = int(2 ** 16 - 1)
 with audioio.AudioOut(SPEAKER, wave) as speaker:
 speaker.play(loop=True)
 time.sleep(duration - 0.01)
 speaker.stop()
 time.sleep(0.01) # add articulation silence

Notice that I’ve added a very short gap of silence for “articulation”, that is to say, hear‐
ing the start of a note. If this didn’t exist and we attempted to call bloop several times
with the same pitch, we would just get a single continuous tone rather than several
notes articulated by a very short moment of silence.

The resulting pitch of the note depends upon how fast the speaker oscillates between
high and low values. This is a version of the PWM technique used with LEDs to
change their brightness. A length is defined as the output sample rate divided by the
desired pitch in Hz. A wave array of unsigned integers containing length items with a
default value of 0 is created as a buffer. The first item in the buffer is set to the equiva‐
lent of “high”. Since the speaker plays the buffer in a repeating loop, it means the
membrane in the speaker vibrates (it’s turned on and then off) once during each loop

Bleeps and Bloops | 143

of the buffer, thus producing a period of the correct length of time to produce a fre‐
quency of the expected pitch. As a result, a continuous sounding tone is produced by
the speaker.

As the pitch of the note changes, so does the length of the wave buffer, and hence the
period and frequency. If the referenced pitch is lower, then the change from high to
low happens less frequently because the loop is longer and thus takes more time to
complete its period. As a result, the membrane of the speaker still rapidly vibrates,
just not as frequently as for a higher pitch. A less frequent vibration lowers the audi‐
ble pitch of the note produced. With this simple operation, we are able to make
music, thanks to an ancient Greek philosopher and mathematician called Pythagoras.

While Pythagoras is well known for a certain theorem to do with right-angled trian‐
gles, he was also fascinated by finding mathematical patterns in nature, founded a
sort of mathematical cult, and forbade his followers to eat meat and beans.

One of the mathematical patterns he was said to have discovered in nature is the rela‐
tionships of sound to ratios. If you pluck a string of a certain length, it always pro‐
duces the same pitch. Pythagoras noticed the pitch of a string was related to its length
and the ratios of the lengths of the strings dictated how they related to each other. For
example, if string A is twice the length of string B, it will make exactly the same note
as B but the musical interval of a whole octave lower (the ratio 2:1). However, if the
ratio between the two strings was 3:2, you’d get the musical interval of a perfect fifth.
It is by building patterns from these ratios that we arrive at the scales of notes used in
music. Most importantly for us, these ratios also apply to the values passed in as
pitches into the bloop function.

Assuming the availability of the bloop function (as shown in the previous example)
within a music module, we can experiment in the REPL to make new pitches:

>>> from music import bloop
>>> a = 440 # A in the middle of the treble clef
>>> bloop(a, 5) # play A for 5 seconds
>>> bloop(a // 2, 5) # play a low A
>>> bloop(a * 2, 5) # play a high A
>>> bloop(int(a * 1.5), 5) # play D (a perfect 5th lower)
>>> bloop(int(a * 0.66), 5) # E (a perfect 5th higher)

By working our way through a musical pattern called the circle of fifths, we arrive at
the frequencies needed to play all 12 notes in a chromatic scale. If I know the fre‐
quency value of the note “E”, I can use it to work out the note a perfect fifth above it
(“B”). If the “B” is in too high an octave, I simply double its value to get back to my

144 | Chapter 11: Sound and Music

1 I’ve had to round some numbers. The whole topic of accurately tuning using the circle of fifths is a compli‐
cated yet fascinating exploration of how music, maths, and physics are all interconnected.

original octave. By recursively working out what the next perfect fifth is and adjusting
the octave, I get the following approximate values:1

notes = {
 'b': 493,
 'a#': 466,
 'a': 440,
 'g#': 415,
 'g': 392,
 'f#': 370,
 'f': 347,
 'e': 330,
 'd#': 311,
 'd': 294,
 'c#': 277,
 'c': 262,
}

Changing octaves is just a matter of doubling or halving these values as required. In
fact, it is very easy to expand our work to include a simple musical domain-specific
language (DSL), as the following script demonstrates:

import audioio
import digitalio
import array
import time
from board import SPEAKER, SPEAKER_ENABLE

Switch on the speaker for output.
speaker_enable = digitalio.DigitalInOut(SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

notes = {
 'b': 493,
 'a#': 466,
 'a': 440,
 'g#': 415,
 'g': 392,
 'f#': 370,
 'f': 347,
 'e': 330,
 'd#': 311,
 'd': 294,
 'c#': 277,
 'c': 262,
}

Bleeps and Bloops | 145

def bloop(pitch, duration):
 length = 8000 // pitch
 wave = array.array("H", [0] * length)
 wave[0] = int(2 ** 16 - 1)
 with audioio.AudioOut(SPEAKER, wave) as speaker:
 speaker.play(loop=True)
 time.sleep(duration - 0.01)
 speaker.stop()
 time.sleep(0.01) # add articulation silence

def play(tune):
 for note in tune:
 name, duration = note.split(':')
 bloop(notes[name], int(duration) / 8)

line1 = ['c:4', 'd:4', 'e:4', 'c:4']
line2 = ['e:4', 'f:4', 'g:8']
line3 = ['g:2', 'a:2', 'g:2', 'f:2', 'e:4', 'c:4']
line4 = ['c:4', 'g:4', 'c:8']
frere_jacques = line1 * 2 + line2 * 2 + line3 * 2 + line4 * 2

play(frere_jacques)

The play function expects a list of notes that follow the pattern note_name:duration.
The note name simply needs to be one of the keys in the notes dictionary that maps
to a pre-determined pitch value. The duration indicates the relative lengths of notes
to each other. The duration is divided by eight in the play function, so users are able
to use more convenient whole numbers instead of fractions of a second. At the end is
a musical example that causes the device to play Frére Jacques.

How would you improve this musical DSL? What features are missing? Think on this
while you read on, since it will be something to have in mind when we look at music
on the micro:bit later in this chapter.

Putting aside musical theory considerations, it’s possible to change the waveform
used to produce notes so the quality of sound (its timbre) is changed. It’s the equiva‐
lent of playing the same notes but with different musical instruments. Waveforms
with different shapes create different timbres. Four common waveforms are displayed
in Figure 11-1:

146 | Chapter 11: Sound and Music

Figure 11-1. The shapes of four waveforms to change the timbre of the output. From the
top: sine, square, triangle, and sawtooth.

Since each waveform has the same period (they all take the same time to complete a
cycle), and it is the period that corresponds to the pitch, they all make the same note.
However, because the values that change over the period of the waveform are differ‐
ent (thus making different shapes), they sound different.

The following example demonstrates how to make and play each type of waveform
illustrated in Figure 11-1:

import audioio
import digitalio
import time
import array
import math
from board import SPEAKER, SPEAKER_ENABLE

Switch on the speaker for output.
speaker_enable = digitalio.DigitalInOut(SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

length = 8000 // 440
sine = array.array("H", [0] * length)
triangle = array.array("H", [0] * length)
sawtooth = array.array("H", [0] * length)
square = array.array("H", [0] * length)

The waveforms are created here.
for i in range(length):
 sine[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15 - 1) + (2 ** 15))
 triangle[i] = abs(int(i * ((2 ** 15 - 1) // length)) - 2 ** 14)
 sawtooth[i] = int(i * ((2 ** 15 - 1) // length))
 if i < length // 2:
 square[i] = (2 ** 16 -1)

Bleeps and Bloops | 147

Play each waveform.
print("Sine")
with audioio.AudioOut(SPEAKER, sine) as sample:
 sample.play(loop=True)
 time.sleep(2)
 sample.stop()

print("Triangle")
with audioio.AudioOut(SPEAKER, triangle) as sample:
 sample.play(loop=True)
 time.sleep(2)
 sample.stop()

print("Sawtooth")
with audioio.AudioOut(SPEAKER, sawtooth) as sample:
 sample.play(loop=True)
 time.sleep(2)
 sample.stop()

print("Square")
with audioio.AudioOut(SPEAKER, square) as sample:
 sample.play(loop=True)
 time.sleep(2)
 sample.stop()

The code speaks for itself: four buffers (one for each type of waveform) are created,
populated with the expected values, and played one after the other. I’ll leave it as an
exercise for the reader to rewrite the Frére Jacques example but with different-
sounding “instruments” based on the waveforms demonstrated.

It’s not just programmed waveforms that can be played. Any audio data encoded as a
mono, 16 kHz, 16-bit wav file can be played. In preparation for the next example, I’ve
downloaded an MP3 of the Star Trek intercom “whistle” and converted it, using a
piece of free software called Audacity, to the format described. Next, I copied it onto
the file system of the Circuit Playground Express as the sound.wav file:

import board
import audioio
import digitalio
from board import SPEAKER, SPEAKER_ENABLE

Required for CircuitPlayground Express
speaker_enable = digitalio.DigitalInOut(SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

f = open("sound.wav", "rb")
speaker = audioio.AudioOut(SPEAKER, f)

speaker.play()

148 | Chapter 11: Sound and Music

http://www.audacityteam.org/

while speaker.playing:
 pass # Block

Upon startup, the device whistles in that well-known way. Those of you familiar with
Python will realise the code is merely opening the sound.wav file and referencing it as
the source stream when the AudoOut class is instantiated. That’s all there is to it!

Before we get onto musical micro:bit matters, we should turn our attention to the
PyBoard and its AMP audio skin. This affords us an opportunity to explore yet
another way to make interesting sounds.

The AMP skin has a small built-in speaker that’s connected to a digital-to-analog
converter (DAC) via a small amplifier. The DAC takes a digital value and turns it into
an analog value represented by a voltage between 0 and 3.3 volts.

Playing a sound involves writing to the DAC in a way that is conceptually similar to
that of the Circuit Python Express, the classic example being a sine wave at a certain
pitch measured in Hertz:

import math
from pyb import DAC

buf = bytearray(100)
for i in range(len(buf)):
 buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))

pitch = 440 # concert A
dac = DAC(1)
dac.write_timed(buf, pitch * len(buf), mode=DAC.CIRCULAR)

By changing the waveform, you get a different timbre (quality of sound), but you may
notice it’s too quiet. The volume of the amplifier can be controlled as an I2C device:

import pyb

def volume(volume):
 pyb.I2C(1, pyb.I2C.MASTER).mem_write(volume, 46, 0)

Valid values for volume range from 0 (quietest) to 127 (loudest), so you should
experiment to find a comfortable level.

Can you work out how to get the PyBoard to play tunes? It’s conceptually very similar
to the Circuit Playground Express and left as an exercise for the reader.

Bleeps and Bloops | 149

2 Two of the formula are commented out, so only the first one is played.

An eccentric solution is to bit bang numbers to the DAC and listen. Here’s how to re-
create the white noise of a mistuned radio:

import pyb
import random
from pyb import DAC

def volume(val):
 pyb.I2C(1, pyb.I2C.MASTER).mem_write(val, 46, 0)

volume(127)
dac = DAC(1)
while True:
 dac.write(random.randint(0, 256))

This isn’t very pleasant to listen to, but it proves a point: it is relatively easy to control
the sound with just a stream of numbers (in this case, a random stream of numbers).
What would happen if the stream of numbers contained patterns? Could we be like
Pythagoras and discover patterns in numbers that make interesting sounds?

Of course we can! Check this out for size:

import pyb
from pyb import DAC

def volume(val):
 pyb.I2C(1, pyb.I2C.MASTER).mem_write(val, 46, 0)

volume(127)
dac = DAC(1)
t = 0
while True:
 dac.write(int(t*((t>>9|t>>13)&25&t>>6)) % 256)
 #dac.write(int(t*((15&t>>11)%12)&55-(t>>5|t>>12)|t*(t>>10)*32) % 256)
 #dac.write(int((t*9&t>>4|t*5&t>>7|t*3&t//1024)-1))
 t += 1

This script isn’t much different from the white noise example, but it has a radically
different output. There are three formulae that take t (representing time) and gener‐
ate interesting patterns of numbers such that musical effects including, bleeps, bloops,
beats, bass lines, and fragments of melody emerge from the speaker.2 Each formula
creates a different musical effect. If you’re interested in how these musical patterns are
created from such seemingly short fragments of code, you should start with the
CounterComplex blog posts that investigate the phenomenon.

At this point, I believe Beethoven nailed it when he said:

150 | Chapter 11: Sound and Music

http://bit.ly/algorithmic-symphonies

3 Oh friends, not these sounds! Let us instead strike up more pleasing and more joyful ones!

O Freunde, nicht diese Töne! Sondern laßt uns angenehmere anstimmen, und
freudenvollere!3

—Ludwig van Beethoven, Ninth Symphony in D minor

Music
MicroPython on the micro:bit includes a powerful music module that comes with an
easy-to-learn musical DSL. It also comes with lots of tunes already built into the
device. These tunes were created for two reasons:

1. By providing tunes for kids, we make it easy for them to use music in their
games, programs, and projects. We included tunes that would work well as sig‐
nals or represent emotions and events.

2. By looking at the built-in melodies, beginner programmers can work out how a
particular musical effect is made.

Since the device doesn’t include a speaker, you’ll need to connect it as shown in
Figure 11-2.

Figure 11-2. Connect a speaker to the micro:bit via pins 0 and 1

Music | 151

To check that it is working, the following REPL example will play a concert “A” at 440
hertz for 10 seconds. If you don’t hear any sound, check the connections between the
micro:bit and the speaker (and if the speaker is powered, make sure it’s on!):

>>> import music
>>> music.pitch(440, 10000)

Assuming you get sound, it’s very simple to turn the device into a musical instrument
with the following script:

import music
from microbit import accelerometer

while True:
 music.pitch(accelerometer.get_x(), 20)

As you move, the device along the x-axis, the pitch of the sound will change, giving
the effect of a strangled cat. The important point is that sound is a great way to pro‐
vide feedback about change, in this case, the reading from the accelerometer. One
way to improve the “instrument” and make it sound less like a strangled cat and more
like something playing actual notes, is to quantize the accelerometer readings. Quan‐
tization is when a range of possible values is mapped to a single value. In the follow‐
ing example, if the accelerometer readings move around within certain ranges, only a
single, constant pitch will be played. Instead of sliding around in pitch, quantization
ensures that the changes only skip to notes in a certain pre-defined scale:

import music
from microbit import accelerometer

buckets = [
 262, # C
 294, # D
 330, # E
 392, # G
 440, # A
]

while True:
 reading = abs(accelerometer.get_x())
 bucket = min(4, max(0, reading // 200)) # quantize!
 music.pitch(buckets[bucket], 20)

A pentatonic (five note) scale is defined as a list of pitches, each of which represents a
bucket containing a range of possible accelerometer values. The accelerometer is read
as an absolute (nonnegative) value. This determines the position within the buckets
list so that a suitable pitch can be selected. Since the range of the accelerometer read‐
ings is approximately 0 to 1,000, the bucket is a value clamped between 0 and 4 (the
available positions in the buckets list). The end result is a micro:bit that plays folk-
like pentatonic melodies rather than sounding like a strangled cat.

152 | Chapter 11: Sound and Music

Rather than trying to perform melodies with the micro:bit as an instrument, it is pos‐
sible to play the built-in melodies like this:

import music

music.play(music.NYAN)

The music module contains a number of capitalised constants that define melodies
with a simple and easy-to-use musical, domain-specific language. The names of these
built-in melodies are descriptive of their musical content: BADDY, BA_DING, BIRTHDAY,
BLUES, CHASE, DADADADUM, ENTERTAINER, FUNERAL, FUNK, JUMP_DOWN, JUMP_UP, NYAN,
ODE, POWER_DOWN, POWER_UP, PRELUDE, PUNCHLINE, PYTHON, RINGTONE, WAWAWAWAA,
WEDDING.

If you evaluate a built-in melody, you’ll discover it’s just a tuple of notes:

>>> import music
>>> music.DADADADUM
('r4:2', 'g', 'g', 'g', 'eb:8', 'r:2', 'f', 'f', 'f', 'd:8')

The musical DSL makes it easy to make new melodies since a tune is merely an
ordered collection of notes. Each note has a note name (such as C, F#, or Bb), an indi‐
cation of the octave containing the note, and a duration. Octaves are numbers
between 0 (lowest) to 8 (highest), with middle C being found in octave 4 (the default
octave if none is first given). Note names are case insensitive, so “a” is the same as “A”.
Durations are also numbers: the higher the value, the longer the note will sound.
Durations are related to each other; for instance, a duration of 4 will last twice as long
as a duration of 2. If you use the note name, R then MicroPython will play a silence
for the specified duration.

Notes are written as a string of characters like this: NOTE_NAME[octave][:duration].
For example, “C1:6” refers to the note named “C” in octave number 1 to be played for
a duration of 6. If this feels familiar, it’s because the very simple musical DSL created
in the Circuit Playground Express example works in a similar manner.

To create a melody, just make a list containing notes, as defined in the manner
described.

MicroPython helps you to simplify melodies. It will remember the octave and dura‐
tion values until you change them. As you can see from the DADADADUM example, not
all the notes have the octave or duration annotated on them; they re-use the previ‐
ously set values for these attributes. The octave and duration values only change
when they need to, making the melody easier to read and quicker to type, as demon‐
strated in the following tune:

tune = ["C4:4", "D", "E", "C", "C", "D", "E", "C",
 "E", "F", "G:8", "E:4", "F", "G:8",

Music | 153

 "G:2", "A", "G", "F", "E:4", "C", "G:2", "A", "G", "F", "E:4", "C",
 "C", "G3", "C4:8", "C:4", "G3", "C4:8"]

Playing a melody means calling the play method. As demonstrated earlier, it expects
a list of note definitions that define the melody to play, but can also receive other
optional arguments such as wait, which, if set to False, makes the call nonblocking;
and loop, which if set to True, repeats the melody until stop is called (see below) or
the blocking call is interrupted. These should feel familiar, since they work in exactly
the same way, as the show method associated with the display object. The following
example will play the tune defined in the last example in a nonblocking manner and
will keep repeating it:

music.play(tune, wait=False, loop=True)

The pitch method, used to play notes of a specific frequency, can also become non-
blocking in the same way. As mentioned, the stop method stops all music playback
(so it would silence the continuously looping tune started in the previous example).

It is possible to change the tempo of musical playback with the set_tempo method. It
takes two arguments, the number of ticks that constitute a beat, and the number of
beats per minute (BPM). A tick is what you specify as the duration of a note in the
musical DSL. This method has default values for both arguments so you could, for
example, just change the tempo with: set_tempo(bpm=180). A get_tempo method
returns the currently set tempo as a tuple representing the ticks and BPM.

If anything goes wrong, use the reset method to put everything back to its default
state (ticks, bpm, duration, and octave).

Speech
A computer that can play music is interesting, but a computer that can talk feels more
“human”.

If your only graphical user interface (GUI) is a 5 x 5 LED display, then it’s hard to
convey information to the user. Making the device talk is one way to give information
in a medium that is fun, efficient, and useful. It is for this reason that a very simple
software speech synthesiser was built into MicroPython on the micro:bit. Given the
anthropomorphic characteristics of the physical design of the hardware (it looks like
a face), the addition of a speech sythesiser just adds to its charm.

Connect a speaker to the device, import the speech module, and use the say function
to make the micro:bit talk:

import speech

speech.say("Hello, World!")

154 | Chapter 11: Sound and Music

It is a remarkably flexible speech synthesiser, since it’s possible to change various
characteristics of the voice:

Pitch
How high or low the voice sounds (0 = high, 255 = low)

Speed
The quickness of delivery (0 = fast, 255 = slow)

Mouth
How tight-lipped or overtly enunciated the voice sounds (0 = tight lipped, 255 =
overly enunciated)

Throat
How tense or relaxed is the tone of voice (0 = tense, 255 = relaxed)

There doesn’t appear to be any accepted way to work out how a voice’s settings will
sound; it’s just a matter of experimentation. For example, the following is particu‐
laraly DALEK like in timbre:

speech.say("I am a DALEK - EXTERMINATE", speed=120, pitch=100, throat=100,
 mouth=200)

The say function also understands four punctuation marks: hyphen (“-”) inserting a
short pause, comma (“,”) inserting a pause double the length of the hyphen, full stop
(“.”) and question mark (“?”) end sentences with a long pause. The full stop causes the
pitch to fall, whereas the question mark causes it to rise.

The say function is convenient. It makes it easy to write English and produce speech.
Unfortunately, it’s not always accurate. To ensure an accurate delivery of the expected
speech, you should use phonemes, the smallest perceptually distinct units of sound
that distinguish different words. They are the building blocks of speech.

The pronounce function takes a string containing a simplified version of the Interna‐
tional Phonetic Alphabet and optional annotations to indicate inflection and empha‐
sis. This has the advantage of not having to know how to spell; you only need to know
how to say the word in order to spell it phonetically. All the phonemes understood by
the synthesizer are listed with examples of their common usage in parentheses:

Simple vowels
IY f(ee)t OH c(o)ne
IH p(i)n UH b(oo)k
EH b(e)g UX l(oo)t
AE S(a)m ER b(ir)d
AA p(o)t AX gall(o)n
AH b(u)dget IX dig(i)t
AO t(al)k

Diphthongs
EY m(a)de
AY h(igh)
OY b(oy)
AW h(ow)
OW sl(ow)
UW cr(ew)

Speech | 155

Voiced consonants
R (r)ed D (d)og
L a(ll)ow G a(g)ain
W a(w)ay J (j)u(dg)e
W (wh)ale Z (z)oo
Y (y)ou ZH plea(s)ure
M Sa(m) V se(v)en
N ma(n) DH (th)en
NX so(ng)
B (b)ad

Unvoiced consonants
S (S)am
SH fi(sh)
F (f)ish
TH (th)in
P (p)oke
T (t)alk
K (c)ake
CH spee(ch)
/H a(h)ead

Nonstandard phonemes
YX diphthong ending (weaker version of Y)
WX diphthong ending (weaker version of W)
RX R after a vowel (smooth version of R)
LX L after a vowel (smooth version of L)
/X H before a non-front vowel or consonant - as in

(wh)o
DX T as in pi(t)y (weaker version of T)

Special phonemes
UL sett(le)
UM astron(om)y
UN functi(on)
Q kitt-en (glottal stop)

Pass in phonemes as a string like this:

speech.pronounce("/HEHLOW") # "Hello"

If you pass invalid phonemes, a ValueError exception is raised.

Phonemes are classified into two groups: vowels and consonants.

Vowels are further categorised as simple vowels, which don’t change their sound as
you say them, or diphthongs, which start with one sound and end with another. For
example, the word “oil” contains a diphthong: the “oi” starts with an “oh” sound but
changes to an “ee”.

Consonants are also subdivided into two groups: voiced, which require the speaker to
use their vocal chords to make a sound (such as “L”, “N”, and “Z”), and unvoiced,
which are produced by rushing air (such as “P”, “T”, and “SH”).

Sometimes spelling with phonemes is counterintuitive. For example, the word
“adventure” has a “CH” in it. The rule of thumb is to think about how the words
sound, not how you would spell them. It is recommended that you experiment until
you get the desired effect.

If you are stuck for where to start, you should use the result of the translate
method. It tells you how the speech synthesiser would have turned plain English into
phonemes:

156 | Chapter 11: Sound and Music

>>> speech.translate("Hello")
' /HEHLOW'

To make the speech sound more natural and understandable, there is a built-in stress
system to add inflection or emphasis. It consists of eight stress markers indicated by
the numerals 1–8. Such markers should be inserted immediately after the vowel to be
stressed. The expression “/HEHLOW” is rather robotic and can be made friendlier
with a stress marker, “HEH3LOW”.

The stress system works by raising or lowering pitch and elongating the associated
vowel sound depending on the number you give:

1. Very emotional stress
2. Very emphatic stress
3. Rather long stress
4. Ordinary stress
5. Tight stress
6. Neutral (no pitch change) stress
7. Pitch-dropping stress
8. Extreme pitch-dropping stress

Such stress markers help pronounce difficult words correctly. For example, if a sylla‐
ble is not enunciated sufficiently, use a neutral stress marker. It is also possible to
elongate words:

speech.pronounce("/HEH5EH4EH3EH2EH2EH3EH4EH5EHLP.")

Finally, and rather remarkably, it is possible to make MicroPython sing by annotating
a pitch related number onto phonemes. The lower the number, the higher the pitch,
with numbers roughly translating into musical notes, as shown in Figure 11-3:

Figure 11-3. Pitch number for singing notes

Speech | 157

Pitch annotations are a pre-pended hash ('#') sign followed by the pitch number and
then the phoneme. The pitch will remain the same until a new annotation is given.
Such annotations are only understood if you use the sing function like this:

import speech

solfa = [
 "#115DOWWWWWW", # Doh
 "#103REYYYYYY", # Re
 "#94MIYYYYYY", # Mi
 "#88FAOAOAOAOR", # Fa
 "#78SOHWWWWW", # Soh
 "#70LAOAOAOAOR", # La
 "#62TIYYYYYY", # Ti
 "#58DOWWWWWW", # Doh
]
song = ''.join(solfa)
speech.sing(song, speed=100)

To extend the note in duration, use a repeated vowel or voiced consonant phonemes
(as demonstrated in the preceding code example). Diphthongs are extended by break‐
ing them into their component parts. For example, “OY” can be lengthened as
“OHOHIYIYIY”.

What can be achieved by combining speech synthesis and music?

In 1961, the very first singing computer, an IBM 7094, performed a version of “Daisy
Bell”. This, in turn, inspired Stanley Kubrick to use the song in his 1968 movie, 2001:
A Space Odyssey. The ship’s rogue computer, HAL 9000, sings the refrain as an astro‐
naut switches it off at the end of the film. Obviously, “Daisy Bell” is a historic piece
when it comes to singing computers, and it is in this tradition that the following code
demonstrates how to make a micro:bit sing a song:

import speech

line1 = [
 '#26DEYYYYYYYYY',
 '#31ZIYIYIYIYIYIYIY',
 '#39DEYYYYYYYYY',
 '#52ZIYIYIYIYIYIYIY',
 '#46GIXV',
 '#42MIYIY',
 '#39YAOW',
 '#46AEAEAEN',
 '#39SERER',
 '#52DUXUXUXUXUXUXUXUXUXUXUXUX']

line2 = [
 '#35AYYYYYYMM',
 '#26/HAEAEAEAEAEAEF',
 '#31KREYYYYYYY',

158 | Chapter 11: Sound and Music

 '#39ZIYIYIYIYIYIYIY',
 '#46AXLL',
 '#42FAOR',
 '#39DHER',
 '#35LUHUHUHV',
 '#31AXAXV',
 '#35YUXUXUXUXUXUXUXUXUXUX']

line3 = [
 '#31IHT',
 '#29WOWNT',
 '#31BIY',
 '#35ER',
 '#26STAYYYYY',
 '#31LIHSH',
 '#35MAE',
 '#39RIXIXIXIXIXIXIXIXIXIXIXIXIXJ',
 '#35AYY',
 '#31KAEAEAEAENT',
 '#39ER',
 '#46FAOAOAORD',
 '#39ER',
 '#46KAA',
 '#52RIXIXIXIXIXIXIXIXIXIXIXIXIXJ']

line4 = [
 '#52BUHT',
 '#39YUXUXL',
 '#31LUXK',
 '#35SWIYIYIYIYT',
 '#52ER',
 '#39PAAAAAAN',
 '#31ER',
 '#35SIYIYIYT',
 '#31UHV',
 '#29ER',
 '#26BAY',
 '#31SIH',
 '#39KUXL',
 '#35MEYYYYD',
 '#52FER',
 '#39TUXUXUXUXUXUXUXUXUXUXUX']

speech.sing(''.join(line1))
speech.sing(''.join(line2))
speech.sing(''.join(line3))
speech.sing(''.join(line4))

For ease of reading, I’ve split each line into its own list, containing strings represent‐
ing each vowel/note combination. At the very end, the lines are sung one after the
other by joining each combination into a single string per line. The best strategy for
judging the durations of notes is trial and error.

Speech | 159

Finally, both the pronounce and sing functions can change timbre in the same way as
the say function, using the speed, mouth, and throat named arguments. Once again,
experimentation is the best strategy. Why not change the way “Daisy Bell” is sung?

Armed with the information contained in this chapter, you will be able to make your
devices bleep, bloop, make music, talk, and sing for the entertainment and education
of your users. It is in this spirit that I’ll end this chapter with a fun script to make a
beat-boxing micro:bit:

import speech
from microbit import sleep, button_a, button_b, display, Image

gap = 220 # How long a silence should be.
bass_drum = "BUH" # Sound of a beat box bass drum
snare = "CHIXIX" # Sound of a beat box snare
roll = "DGDG" # Sound of a beat box drum roll
rest = "" # Represents a rest of "gap" duration

Two sequences (lists) of beats. One beat per line.
beats1 = [# Mellow
 bass_drum, rest, rest, rest,
 snare, rest, rest, rest,
 bass_drum, bass_drum, bass_drum, rest,
 snare, rest, roll, roll,
]

beats2 = [# Hardcore
 bass_drum, snare, snare, snare,
 bass_drum, snare, roll, roll,
 bass_drum, bass_drum, bass_drum, snare,
 bass_drum, roll, roll, bass_drum,
]

Play a sound or silence.
def beat_box(sound):
 if sound:
 display.show(Image.HEART)
 sleep(10)
 display.clear()
 speech.pronounce(sound)
 else:
 sleep(gap)

Play all sounds in "beats" sequence.
def play(beats):
 for beat in beats:
 beat_box(beat)

selected = beats1 # Default beat sequence
Keep on looping over the selected sequence
while True:

160 | Chapter 11: Sound and Music

 # Change sequence with buttons A and B
 if button_a.was_pressed():
 selected = beats1
 elif button_b.was_pressed():
 selected = beats2
 # Finally play the selected sequence
 play(selected)

Speech | 161

1 This bot was designed by the exceptionally talented Radomir Dopieralski. Radomir was one of the many vol‐
unteers who helped bring MicroPython to the micro:bit. His passion is making robots for MicroPython
boards, and you can find many examples of his work on hackaday.io.

CHAPTER 12

Robots

Robots are cute in an “all humans must die” sort of a way; and, thanks to the educa‐
tional uses of devices like the micro:bit, many makers have created robots that
demonstrate how robotics can be a relatively simple and fun endeavour. This chapter
explores two robotics projects that show how to use MicroPython to make your very
own robotic invasion. Both use the micro:bit, although the techniques discussed are
easy to transfer to other boards running MicroPython.

Trundle Bot
This bot trundles around on wheels. It has an analog distance sensor on the front to
detect objects in its way. If something blocks its way, it rotates left or right until no
blockage is detected, then it continues on its way. It’s a very simple bot that can be
made in about an hour with only a few parts. The code to drive the bot is also beauti‐
fully simple and demonstrates how to drive servo motors to give the bot movement.1

The bot was successfully used in a bot-building workshop at EuroPython 2016 and,
because of its simplicity, was easy to modify and change to suit the available building
materials and aims of the builders (who included experienced Python programmers,
their nontechnical partners, and children).

The minimum parts required are inexpensive:

• A micro:bit
• 2 9g continuous rotation servos

163

http://hackaday.io/

• A Pololu Carrier with Sharp GP2Y0A60SZLF Analog Distance Sensor, 3 V
• 2 wheels
• A Pololu caster ball
• A portable power source to provide between 3.3 V and 4.2 V

There also needs to be some means of making a chassis and wires to connect the
components together. Double-sided sticky tape, rubber bands, and googly eyes are
also helpful for assembling the device. Don’t be too worried about making something
that looks as well constructed as Figure 12-1. The point of this robot is to make some‐
thing that just works. Once it’s working, you can improve the construction. For exam‐
ple, Figures 12-2 and 12-3 show a homemade version of the bot made out of
cardboard, sticky-backed plastic, rubber bands, and googly eyes. I’m sure you’ll agree
it has a certain charm about it (and more importantly, it’s something a beginner inter‐
ested in robotics would have fun constructing).

Figure 12-1. A very simple trundlebot

164 | Chapter 12: Robots

Figure 12-2. The trundlebot showing an improvised chassis held together by sticky-
backed plastic, twisted wires, tape, and a rubber band

Figure 12-3. The assembled trundlebot (the micro:bit has sticky backed plastic to hold it
in place). Googly eyes make it friendly.

Trundle Bot | 165

The trick is to use your imagination and have fun. Most importantly, for the robot to
work, it needs to be wired up correctly. While Figure 12-4 may at first look compli‐
cated, you will soon realise how simple the bot’s construction really is.

Figure 12-4. The trundlebot wiring diagram

Assuming you have connected the bot and assembled some sort of chassis, the next
task is to drive the servo motors to make it move and take readings from the distance
sensor so it won’t bump into things.

The servos are physically connected to pins 0 and 1, through which analog signals are
sent to control the direction and speed of rotation. The pulse width of the signal is the
attribute that enables control. A pulse width of some arbitrary duration corresponds
to a stopped motor. A pulse width either smaller or larger than the stopped value
causes rotation in one direction or the other. The further away from the stop value
the pulse width becomes, the greater the speed or rotation.

166 | Chapter 12: Robots

This functionality is wrapped up in a Servo class:

import microbit

class Servo:
 def __init__(self, pin, trim=0):
 self.pin = pin
 self.trim = trim
 self.speed = 0
 self.pin.set_analog_period(20)

 def set_speed(self, speed):
 self.pin.write_analog(int(25 + 100 * (90 + speed) / 180 + self.trim))
 self.speed = speed

The class is initialised with a reference to the physical pin used to drive the motor and
an argument called trim. Trimming is simply making fine adjustments to something;
and, since servo motors are notoriously inconsistent in performance characteristics,
there needs to be some way to adjust them. The speed attribute represents how fast
the servo is moving, and the configuration is completed by setting the period (fre‐
quency) for PWM with the set_analog_period method of the pin. The set_speed
method changes the speed of the servo. This can range from -90 (full backwards), via
0 (stop) to 90 (full forwards).

The next piece of the puzzle is representing the robot itself:

class Robot:
 def __init__(self):
 # Remember to check the trim values.
 self.left_servo = Servo(microbit.pin0, 2)
 self.right_servo = Servo(microbit.pin1, 1)

 def go(self, distance):
 microbit.display.show(microbit.Image.ARROW_S)
 self.left_servo.set_speed(-90)
 self.right_servo.set_speed(90)
 microbit.sleep(int(distance * 2000 / 17))
 self.stop()

 def turn(self, angle):
 if angle > 0:
 microbit.display.show(microbit.Image.ARROW_E)
 self.left_servo.set_speed(-90)
 self.right_servo.set_speed(-90)
 microbit.sleep(int(angle * 64 / 9))
 else:
 microbit.display.show(microbit.Image.ARROW_W)
 self.left_servo.set_speed(90)
 self.right_servo.set_speed(90)
 microbit.sleep(int(-angle * 64 / 9))
 self.stop()

Trundle Bot | 167

 def stop(self):
 microbit.display.show(microbit.Image.DIAMOND)
 self.left_servo.set_speed(0)
 self.right_servo.set_speed(0)

 def get_distance(self):
 return microbit.pin2.read_analog()

This allows us to pull all the components together under the control of a single
instance of the Robot class.

Initialisation involves creating two new instances of the Servo class: one for each
servo motor. As the comment says, if the robot veers off course when attempting to
drive in a straight line, this is where to adjust the trim. The other methods provide all
the functionality you need: go, turn, stop and get_distance. The go method uses its
distance argument to work out how long to wait while the servo motors are active.
Notice how the left and right motors work in opposite directions since they’re mir‐
rored in how they are arranged on the physical device (and thus the direction of
travel is reversed). The turn method works in a similar way but given an angle argu‐
ment, and the stop method does exactly what it says. All three of these methods work
by actuating the servo motors in a meaningful way in order to hide the implementa‐
tion details (at this level of abstraction in the code, we just want developers to think
in terms of the robot rather than servo motors). In this spirit, the get_distance
method simply returns the analog reading from the distance sensor connected to pin
2. This is an inverse reading: smaller means further away.

Making the robot work requires instantiating the Robot class and driving it from
inside a simple event loop:

robot = Robot()
while True:
 robot.go(5)
 if robot.get_distance() > 700:
 robot.turn(20)
 left_distance = robot.get_distance()
 robot.turn(-40)
 right_distance = robot.get_distance()
 robot.turn(20)
 if left_distance < right_distance:
 robot.turn(60)
 else:
 robot.turn(-60)

Whilst in the event loop, the robot is made to go forward. However, if the robot gets a
high result from the get_distance call, it follows a very simple algorithm: measure
the distance of things to both the right and left of the current position, check which
reading has the most available distance to move forward, and then turn in that direc‐

168 | Chapter 12: Robots

tion. While this isn’t HAL 9000-level artificial intelligence, it’s certainly enough to
keep the bot out of trouble.

The end result is a semi-independent, mobile device that works via a computing
“brain”. It is a very simple robot, but that is a good thing because it offers potential
and room for improvement.

How might you improve the robot’s behaviour? Could you make it follow objects
instead of just avoiding them? Can you think of any physical improvements to the
robot that will make it useful?

Racer Bot
There are several professionally designed robot kits for the micro:bit, and we will use
one of them to give an example of how MicroPython can be used to command and
control quite a sophisticated robot.

The Bit:Bot by 4tronix is another trundlebot but tricked out with a large number of
features: NeoPixels, a single pitch buzzer, line following sensors, light sensors, a
proper edge connector for the micro:bit, and a battery holder with a power switch
(see Figure 12-5). Assembly takes minutes.

Figure 12-5. The Bit:Bot by 4tronix

Racer Bot | 169

http://4tronix.co.uk/bitbot

Control of the motors is more complicated than our homemade robot, since each
motor has two connections: one for direction (forwards or backwards), the other for
speed. The simplest way to make the motors move is to switch the pins to which they
are connected to high:

pin8.write_digital(0) # set direction to forwards
pin0.write_digital(1) # set speed to full on

However, we probably want to change the speed of the motor, so instead we should
replace the write_digital call on pin0 to its analog equivalent:

pin0.write_analog(511)

This is another appearance of PWM to drive something. Since the range for writing
analog values is between 0 (off) to 1,023 (always on), then the preceding example sets
the speed of the motor to half its potential full speed (since 511 is just under half of
1,023).

The 12 NeoPixels are connected to pin13 and use the standard neopixel module that
comes with the micro:bit. The buzzer is monotonic (it only plays one note) and can
be controlled with a digital signal via pin14. Reading digital values from pin 11 (left)
and pin 5 (right) will indicate if a line is detected (allowing you to create a simple line
following autopilot). The two light sensors are controlled by pin 16 (to select which
one to use, 0 means left; 1 means right) and pin 2 (to read the analog value represent‐
ing the amount of light detected).

It is possible to create a remote-controlled robot with two micro:bits connected using
the radio module. This will require signalling between devices and a way to turn
such interactions from the controlling micro:bit into outcomes on the remote con‐
trolled robot. In other words, there needs to be an intuitive user interface.

It should be possible to tilt the controlling micro:bit to indicate the direction of travel.
For example, tilting the micro:bit forwards and left will cause the robot to move for‐
wards and to the left. Furthermore, there should be some measurement of the degree
of tilt so that the robot changes speed or angle of steering. One of the buttons should
cause the buzzer to bleep like a sort of minimalist robot car horn, and the other could
toggle the NeoPixels on and off. We’ll set the line following and light sensors aside for
the moment.

Assuming the control outlined, a protocol for sending actionable information is still
needed. We need some way to send signals for the speed, steering, the buzzer, and
NeoPixels; in other words, four pieces of information. The simplest and easiest-to-
understand solution would be to send a string with the four values delineated by a
token such as “:”. If the place order of the values is pre-defined, the receiving robot
can split the string at each instance of the “:” token and work with the resulting value.
A message would look something like speed:steer:buzzer:neopixel, with each
position being either an analog value (in the case of the speed and steer) or a digital

170 | Chapter 12: Robots

value to indicate to sound the buzzer or toggle the NeoPixels. All that would remain
is an agreement on the radio channel.

The following script for the controlling micro:bit implements all these features:

from microbit import *
import radio

radio.config(channel=44)
radio.on()

Defines the range of valid tilt from accelerometer readings.
max_tilt = 1000
min_tilt = 199

while True:
 # Grab the inputs.
 y = accelerometer.get_y() # Forwards / backwards.
 x = accelerometer.get_x() # Left / right.
 a = button_a.was_pressed() # Horn.
 b = button_b.was_pressed() # Toggle lights.

 # Data from the controller to be sent to the vehicle.
 # [speed, steer, buzzer, neopixel]
 control_data = [0, 0, 0, 0]
 if x < -min_tilt and y < -min_tilt:
 # forwards left
 display.show(Image.ARROW_NW)
 control_data[0] = max(y, -max_tilt)
 control_data[1] = max(x, -max_tilt)
 elif x < -min_tilt and y > min_tilt:
 # backwards left
 display.show(Image.ARROW_SW)
 control_data[0] = min(y, max_tilt)
 control_data[1] = max(x, -max_tilt)
 elif x > min_tilt and y < -min_tilt:
 # forwards right
 display.show(Image.ARROW_NE)
 control_data[0] = max(y, -max_tilt)
 control_data[1] = min(x, max_tilt)
 elif x > min_tilt and y > min_tilt:
 # backwards right
 display.show(Image.ARROW_SE)
 control_data[0] = min(y, max_tilt)
 control_data[1] = min(x, max_tilt)
 elif y > min_tilt:
 # backwards
 display.show(Image.ARROW_S)
 control_data[0] = min(y, max_tilt)

Racer Bot | 171

 elif y < -min_tilt:
 # forwards
 display.show(Image.ARROW_N)
 control_data[0] = max(y, -max_tilt)
 if a:
 # Sound the buzzer
 control_data[2] = 1
 if b:
 # Toggle the NeoPixels
 control_data[3] = 1
 if any(control_data):
 msg = '{}:{}:{}:{}'.format(*control_data)
 radio.send(msg)
 else:
 display.clear()
 sleep(20)

The bulk of the script is in an event loop in which any inputs from the accelerometer
and buttons are read; and, depending on the readings from the accelerometer, the
speed and steer values are set. If a button is pressed for the buzzer or NeoPixels, this
is set as a flag. So the driver has feedback about what the micro:bit thinks it is doing
and the display is updated with arrows to indicate the direction. Finally, if there’s any
control data to send, it is transmitted via the radio.

Things are simpler for the micro:bit controlling the robot: it needs to consume the
signal, decode it, turn the speed, and steer into signals to drive the motors and react
to buzzer or NeoPixel signals:

from microbit import *
import radio
import neopixel

display.show(Image.SKULL) # Logo :-)

colour = (244, 0, 244) # NeoPixel colour to use for lights.
np = neopixel.NeoPixel(pin13, 12)
lights = False

radio.config(channel=44)
radio.on()

def move(speed, steer):
 # Sensible defaults that mean "stop".
 forward = 0
 left = 0
 right = 0
 if speed > 0:
 # Moving forward.
 forward = 1

172 | Chapter 12: Robots

 left = 1000 - speed
 right = 1000 - speed
 elif speed < 0:
 # In reverse.
 left = 1000 + (-1000 - speed)
 right = 1000 + (-1000 - speed)
 if steer < 0:
 # To the right.
 right = min(1000, right + abs(steer))
 left = max(0, left - abs(steer))
 elif steer > 0:
 # To the left.
 left = min(1000, left + steer)
 right = max(0, right - steer)
 # Write to the motors.
 pin8.write_digital(forward)
 pin12.write_digital(forward)
 pin0.write_analog(left)
 pin1.write_analog(right)

while True:
 pin14.write_digital(0) # Switch off the horn
 try:
 msg = radio.receive()
 except:
 msg = None # Networks are not safe!
 if msg is not None:
 # Get data from the incoming message.
 speed, steer, horn, light = [int(val) for val in msg.split(':')]
 move(speed, steer) # Move the robot.
 if horn:
 # Sound the horn
 pin14.write_digital(1)
 if light:
 # Toggle lights
 if lights:
 np.clear()
 lights = False
 else:
 lights = True
 for i in range(12):
 np[i] = colour
 np.show()
 else:
 # No message? Do nothing!
 move(0, 0)
 sleep(20)

A move utility function is defined to hide away the common implementation details of
setting the pins to drive the motors. It takes the transmitted speed and steer values

Racer Bot | 173

and ensures that the correct direction of rotation and level of speed is sent to the
motors so that the robot moves forward and backwards or steers left or right.

The event loop switches off the horn (so it will only make a short bleep sound), lis‐
tens out for incoming radio messages, and, if a message is received, reacts to the con‐
tent therein.

If you have more than one robot and enough micro:bits, you could organise a race.
However, to stop interference from the wrong controller, you should ensure that the
radio channel is different between each pair of devices. Furthermore, the robot dis‐
plays a logo, so it’s probably a good idea to change that to a contestant number.

To end, I want to suggest a couple of enhancements to our robot to challenge your
newfound robotics skills. If you press both buttons at the same time, it should be pos‐
sible to toggle in and out of autopilot mode. The autopilot could work in two differ‐
ent ways: it could follow a line, or it could follow a light source. There are line- and
light-detecting sensors on the chassis, so have a play and try to work out how to make
it work.

174 | Chapter 12: Robots

CHAPTER 13

Idiomatic MicroPython

The prior handful of chapters deal with many technical aspects of working with
MicroPython: the modules you have available to you, how they interact with the
hardware, and how various protocols can be used to make interesting and useful
things happen. However, there has been no discussion of how to use such knowledge
to create good code: code that is idiomatic MicroPython or, as some in the community
like to say, Pythonic. To learn what this means, we need to take a step back and con‐
sider Python in terms of both language design and programming culture before look‐
ing into how best to write Pythonic MicroPython on highly constrained embedded
devices.

Why is Python such a popular language? What motivates so many to contribute to
the Python community? Why is Python widely used as a teaching language?

In the 1990s, Guido van Rossum, the creator of Python and the project’s Benevolent
Dictator for Life (BDFL), used Python as the basis for a project called “Computer
Programming for Everybody: A Scouting Expedition for the Programmers of Tomor‐
row”. The opening paragraphs of the project’s proposal provide one clue to Python’s
popularity:

In the seventies, Xerox PARC asked: “Can we have a computer on every desk?” We
now know this is possible, but those computers haven’t necessarily empowered their
users. Today’s computers are often inflexible: the average computer user can typically
only change a limited set of options configurable via a “wizard” (a lofty word for a can‐
ned dialog), and is dependent on expert programmers for everything else.
We ask a follow-up question: “What will happen if users can program their own com‐
puter?” We’re looking forward to a future where every computer user will be able to
“open the hood” of their computer and make improvements to the applications inside.
We believe that this will eventually change the nature of software and software devel‐
opment tools fundamentally.

175

We compare mass ability to read and write software with mass literacy, and predict
equally pervasive changes to society. Hardware is now sufficiently fast and cheap to
make mass computer education possible: the next big change will happen when most
computer users have the knowledge and power to create and modify software.

At the heart of Python’s outlook is a spirit of empowerment. It’s no wonder people like
it. But Python also has a reputation for being a beautiful, expressive, and fun-to-use
language. Why?

I believe the answer lies in a cultural artefact called the “Zen of Python”. To read it,
open a standard Python REPL and type import this:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious
way to do it.
Although that way may not be obvious at first unless
you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea--let's do more of those!

It defines what it is to be “Pythonic”, that is, to write idiomatic Python code. Its
author, Tim Peters, describes it as a document that “succinctly channels the BDFL’s
guiding principles for Python’s design into 20 aphorisms, only 19 of which have been
written down”. Its humorously framed outlook displays a striving for simplicity,
clarity, pragmatism and a sense of playful fun. This is quite different to the usual pre‐
sentation of programming languages as complex, obscure, dense, and serious endeav‐
ours. Python favours a simple, elegant, and easy-to-comprehend solution to
programming problems. As Alex Martelli puts it in his Python Cookbook (O’Reilly),
“To describe something as clever is not considered a compliment in the Python cul‐
ture.”

Put simply, Python’s focus on simplicity, clarity, pragmatism, and fun is appealing,
and this attitude is brought to embedded development with MicroPython.

176 | Chapter 13: Idiomatic MicroPython

1 There are a number of such Easter eggs in the micro:bit port of MicroPython. They’re there to reward the
curious, playful, and fearless explorers who may use the device. They’re well hidden, but reading the output of
the help() function will lead you down the rabbit hole, if you know what you’re looking for.

2 I should know, I wrote it!
3 If you speak English with an Australian or British accent.
4 The first “verse” actually contains three verses if you read it in different directions.
5 Not to be confused with a filesystem on a USB flash drive.

The Zen of MicroPython
There is a Zen of MicroPython, concocted as an Easter egg in the micro:bit port of
MicroPython.1 To read it, connect to the REPL and import this:

>>> import this
The Zen of MicroPython, by Nicholas H. Tollervey

Code,
Hack it,
Less is more,
Keep it simple,
Small is beautiful,

Be brave! Break things! Learn and have fun!
Express yourself with MicroPython.

Happy hacking! :-)

It is appropriately short and is a metaphor:2 while there is humour, pearls of wisdom,
and even a rhyme,3 its most important attribute is brevity. If you look at the way it is
written, there are also linguistic tricks that hint at the subtle and extraordinarily
clever tricks MicroPython pulls to work in such constrained environments.4

The Zen of MicroPython is to express as much as possible with as little as possible,
and this should be reflected in your code. Why? Because on some platforms, such as
the micro:bit, you have but 16k RAM and a call stack of no greater depth than 5. Nev‐
ertheless, despite such extraordinarily constrained conditions, it is still possible to
create a remarkable amount of functionality. In order to do so, you need to be aware
of some of the tricks-of-the-trade when working with MicroPython. That’s what the
rest of this chapter will examine.

Memory
Memory is perhaps the biggest source of problems for new MicroPython program‐
mers. There are two types of memory you should be aware of: flash memory (that is
persistent and written when you “flash” MicroPython onto the device) and RAM (vol‐
atile memory). Flash memory is usually in the order of hundreds of kilobytes,5

The Zen of MicroPython | 177

whereas RAM can be as low as 8 kilobytes (although it is usually a lot more, depend‐
ing on your device).

On some devices, such as the micro:bit, flash memory is limited, and there may be a
maximum size for your script. For example, a script embedded directly into the
MicroPython hex file may only be up to 2 kilobytes in size. You could store larger
scripts on the (limited) filesystem (around 20 kilobytes). But it’s important to under‐
stand that doing something as simple as removing comments, reducing indentation
to only 2 characters (instead of the usual 4), or getting rid of blank lines may allow
you to fit more code into the limited amount of flash memory.

In its standard configuration, MicroPython works in the same way as CPython. It
parses your Python script, compiles it to bytecode, then runs it in a virtual machine
(VM). These steps take up RAM in two important ways: when compiling Python to
bytecode and when executing the bytecode with the MicroPython VM. There is a fur‐
ther issue called heap fragmentation that also has an adverse effect on memory usage.

When you import code, the MicroPython compiler uses memory to turn Python
code into bytecode. Once compilation is finished, this memory becomes available to
MicroPython. The resulting bytecode is stored in RAM. In some cases (such as when
several modules have already been converted so their bytecode will take up RAM),
the import statement will produce a memory exception since the compiler has run
out of RAM.

Another cause for compilation memory errors is if a module creates global objects
that require RAM at time of import (RAM that is unavailable for later compilation
tasks). Avoid code that runs on import: it is better to have initialisation code that runs
after all the required modules have been imported. This maximises the available
RAM for the compilation step.

If RAM is still an issue during the compilation step, you have two further options,
depending on the version of MicroPython you are using.

Frozen modules and frozen bytecode allow you to “bake in” code into the firmware
image you flash onto the device. How this is achieved depends on the MicroPython
port you’re using, so it’s best to consult the port-specific README for instructions.
Some ports don’t support this feature at all. At a high level, the steps are the same: put
the target Python code into certain directories (depending on whether the code is to
be a frozen module or frozen bytecode), build the firmware (although a specific com‐
mand may be needed to freeze the code), and flash the resulting firmware onto the
device. The end result is the code you’ve “frozen” into the firmware can be accessed
with an import statement.

If re-compiling the MicroPython firmware is inappropriate, it is also possible to man‐
ually pre-compile bytecode on your PC and copy the resulting .mpy files over to the
device’s filesystem, thus mitigating the need for compilation. The MicroPython cross

178 | Chapter 13: Idiomatic MicroPython

compiler can be found in the mpy-cross directory of the project’s source code. The
cross compiler runs on any Unix-like operating system and, in its simplest form,
merely requires you to do this:

$./mpy-cross my_module.py

This results in a file called my_module.mpy that you should copy onto the device’s file‐
system. In your code, import it as you would any other Python module with import
my_module.

Once the compilation step is completed, execution of the bytecode takes place and
uses RAM. There are a number of ways in which you can reduce the footprint of
RAM usage during the execution phase.

Some (but not all) ports of MicroPython have a const keyword that works in a simi‐
lar way to #define in the C language. When your code is compiled to bytecode, the
compiler will avoid using a lookup to the name of the constant by substituting its lit‐
eral value. This saves bytecode and thus RAM. Usage is simple:

from micropython import const
ROWS = const(33)
_COLS = const(0x10)
a = ROWS
b = _COLS

The value passed into const must be anything that, at compile time, evaluates to an
integer. In the example, the ROWS value will take up room in the globals dictionary
because it will be available for other modules to import and use. However, because of
the pre-pended underscore, the _COLS value is not available outside the current mod‐
ule and thus takes up no RAM.

Another useful technique is to save memory with constant data structures that never
change during the execution of your code. If you are using frozen bytecode, you
should consider data expressed as bytes objects. Since bytes objects are immutable,
the compiler will ensure such objects remain in flash memory rather than getting
copied over to RAM. The ustruct module built into MicroPython can be used to
convert between bytes types and other Python types.

This trick works on other immutable values (such as strings, floats, integers, and
complex numbers) and means they will be stored in flash memory for the same rea‐
son. When you assign such an immutable object, the value resides in flash, and only a
reference to the location of the value takes up any RAM.

One might expect a tuple (an immutable data structure) of immutable values to bene‐
fit from the same trick. However, this is a future enhancement.

Memory | 179

If you are used to writing Python in less constrained environments where it’s fine to
create lots of objects, you may need to rethink how you change your programming
style to make the use of RAM more efficient.

For example, when concatenating strings, try to do it in such a way that it happens at
compile time:

foobar1 = "foo" + "bar" # bad
foobar2 = "foo" "bar" # good

Both produce "foobar", but the first creates two string objects and allocates RAM for
concatenation before producing a third object. The second just concatenates at com‐
pile time.

When strings need to be written to or read from a stream (such as a file), do it in a
lazy manner. Rather than create a large string object that takes up RAM, work in a
piecemeal fashion with smaller chunks. In a related manner, if you’re reading data
from, say, I2C, use a pre-allocated buffer rather than needlessly creating new objects
as you loop over the data:

Bad
while True:
 var = spi.read(100)
 # process data

Good
buf = bytearray(100)
while True:
 spi.readinto(buf)
 # process data in buf

Rather than create a new buffer on each pass (as the bad snippet does), you should re-
use a buffer, which is much faster and, as we shall see, helps to avoid memory frag‐
mentation.

Another trick involves using the most memory-efficient representation of data. For
example, an integer usually takes up 4 bytes, so if you can just use bytes for smaller
numeric values, you’ll save RAM. For example, (1, 2, 3) takes up more RAM than
b'\1\2\3'. If this were in a frozen bytecode module, the bytes object would reside in
the flash memory.

Memory fragmentation is an interesting problem you should be aware of. Imagine
you create two objects called A and B. If A is reclaimed, but B remains at a higher
memory address, then only objects no bigger than A will be able to reuse the space in
the memory that is left over. If there’s a lot of object creation and reclamation in your
code, then there’s a danger of such memory fragmentation occurring: despite there
being substantial amounts of RAM available, there is not enough contiguous RAM to
store some objects of a certain size. The result is a memory error.

180 | Chapter 13: Idiomatic MicroPython

This is why it’s better to use a single object of fixed size, such as a reusable buffer.
Furthermore, where such large, permanent buffers are needed, it’s best to instantiate
these early in the program before fragmentation can occur.

Under the hood, MicroPython’s garbage collector is managing memory for you.
There is a section of memory called the heap. When an object is created, it is stored
on the heap. When it goes out of scope in your code (i.e., there are no more refer‐
ences to it to allow you to access it), then its chunk of the heap is reclaimed for other
objects by the garbage collector (GC). This process happens automatically, so you
mostly never have to worry about memory. However, you can access the garbage col‐
lector yourself via the gc module and force MicroPython to reclaim such redundant
objects with the gc.collect function. If you need to call the garbage collector, you
will get better performance if you do it a little and often.

The gc and micropython modules also contain functions that allow you to examine
how memory is used for the purposes of debugging. For example, gc.mem_free and
gc.mem_alloc tell you how much of the heap is free or allocated. The micropy
thon.mem_info function will report a summary of memory usage if called with no
arguments and will display a table of heap allocation if you pass in an arbitrary argu‐
ment (such as 1):

>>> micropython.mem_info(1)
stack: 448 out of 15360
GC: total: 102080, used: 2832, free: 99248
 No. of 1-blocks: 45, 2-blocks: 14, max blk sz: 68, max free sz: 6194
GC memory layout; from 20003140:
00000: h=hhhBhhhhhBTBhhh==h=hh===hBhTh=hSBhTh=hh=hSBhTh=hh=hShhhh=Th==h
00400: =Bh=Bh=h=Shhh=======h===
00800: ========================hB..h...h========h========h=....h=......
 (96 lines all free)
18c00: ..

The table uses 10 symbols:

• . (free block)
• h (head block)
• = (tail block)
• m (marked head block)
• T (tuple)
• L (list)
• D (dict)
• F (float)
• B (byte code)
• M (module)

Memory | 181

6 The minimum allocation unit for memory is 16 bytes.

Each letter in the table is a single block of memory (16 bytes).6

The micropython.alloc_emergency_exception_buf is also an extraordinarily useful
temporary aid when debugging your work. If you’re connected to the REPL, in cer‐
tain memory constrained conditions, if you encounter an exception you won’t get a
traceback containing details of the error. You’ll just see the name of the exception.
However, it’s possible to tell MicroPython to pre-allocate some bytes of RAM as an
emergency exception buffer, thus allowing you to see useful traceback information
about these situations. This is very helpful when debugging; however, this feature
shouldn’t be considered appropriate under “normal” usage situations, since it takes up
memory. A good way to use this feature is to put it at the start of your “main.py”
script so that it’ll be active for all subsequent code. A good size for the buffer is
around 100 bytes:

import micropython

micropython.alloc_emergency_exception_buf(100)

One final debugging trick to share (originally invented by Carlos Pereira Atencio) is
the pseudobreakpoint. In “regular” Python it’s possible to attach a debugger to a
Python process and tell it to stop at certain line numbers in the source code, thus
allowing you to investigate the state of the program at that point in its execution.
Unfortunately, there is no such debugger for MicroPython. However, by using an
infinite loop immediately prior to the code of interest, MicroPython will patiently
wait until the REPL is connected and you press CTRL-C. Simply use while True:
pass in these situations. It’s nowhere nearly as powerful as a real breakpoint, nor is it
a universal replacement for a breakpoint, but it does give you something similar to a
breakpoint’s behaviour of pausing to allow you to interrogate the current context.

Performance
The microcontrollers upon which MicroPython runs are very slow compared to the
CPUs of other sorts of devices. Sometimes this is a problem and you need to improve
the performance of your code.

One obvious attribute of well-performing code is that the algorithm you’re using is
efficient. This is something under your control and not really in the scope of this book
(i.e., it’s up to you to be a competent programmer so that you research and implement
an appropriately efficient algorithm for your task).

Another important aspect of your code is that it allocates and uses resources effi‐
ciently (as covered in the previous section on memory usage).

182 | Chapter 13: Idiomatic MicroPython

A final, and too-obvious-to-mention-but-it’s-always-missed-anyway aspect of your
code is to check that it actually does what you expect it to.

Since attaching a debugger to a running MicroPython process on a board is out of the
question, then connecting to the REPL, ensuring you make appropriate use of print,
and watching the resulting messages scroll by is probably your best course of action
to check the state of your running code. Remember, too, that if you interrupt the run‐
ning program, all the objects will still be available for you to inspect interactively via
the REPL.

Some boards that run MicroPython don’t have floating-point hardware, so such oper‐
ations are done in software (and are thus much slower). If this is the case, where pos‐
sible, use integer operations, and only use floating-point arithmetic in parts of the
code where performance isn’t so important.

If after taking these steps you still encounter performance problems, you should pro‐
file your code. If your port of MicroPython has the time module, the following deco‐
rator function will measure the execution time of any method or function to which it
is annotated:

def timed_function(f, *args, **kwargs):
 myname = str(f).split(' ')[1]
 def new_func(*args, **kwargs):
 t = time.ticks_us()
 result = f(*args, **kwargs)
 delta = time.ticks_diff(time.ticks_us(), t)
 print('Function {} Time = {:6.3f}ms'.format(myname, delta/1000))
 return result
 return new_func

Once you have identified problematic code, you have several options to improve per‐
formance (in addition to improving your Python code with the suggestions outlined).
On some boards, you can instruct the compiler to emit ARM native opcodes rather
than MicroPython bytecode. Most Python code can be used with this approach,
although context managers and generators are not supported; and if raise is used, an
argument must be supplied. To use this functionality, decorate the target function
with micropython.native. Unfortunately, there is a trade-off: an increase in the size
of compiled code (despite the end result running twice as fast as bytecode).

Depending on your board, in addition to bytecode or native opcodes, MicroPython
can emit a third type of output: viper. Decorating with micropython.viper produces
an optimised version of ARM native opcodes (such as improvements in integer arith‐
metic), although not all of Python’s features are supported.

When available, these two more performant emitters are like a sort of manual JIT
compiler (such as the one built into PyPy). Usually the JIT will analyse code and,
when certain conditions are met, abandon Python bytecode and switch to native

Performance | 183

instructions, thus automatically improving performance. However, a JIT is compli‐
cated and therefore not desirable for underpowered microcontrollers. When avail‐
able, such manual indications to produce more performant output is a “good enough”
compromise.

Another option to improve performance is to use inline assembler code for micro‐
controllers with ARM’s Thumb2 architecture. It is beyond the scope of this book to
deal with the details of assembler language, but the following example demonstrates
how to create a function with inline assembler and call it within your Python code:

@micropython.asm_thumb
def asm_add(r0, r1):
 add(r0, r0, r1)

The function must be decorated with micropython.asm_thumb. It’s possible for such
inline assembler functions to accept up to four arguments that must be named r0, r1,
r2, and r3. The function defined in the previous example takes two arguments and
adds them together in a way that is equivalent to r0 = r0 + r1 in Python. By con‐
vention, because the result is put into register r0, that is what is returned.

A final option is to create your module in C, recompile MicroPython, and use it as a
native module. MicroPython is written in ANSI C, modular, well tested, and has
plenty of code examples for how to do this. A word of warning to those of you with C
experience: the Zen of MicroPython applies here too. Coding in C for microcontrol‐
lers is quite different to C on regular devices. Conciseness, a regard for the limited
resources (especially memory), and efficiency are paramount.

In general, it is worth re-emphasising that MicroPython is mostly just regular
Python. On the whole, for short scripts, standard idiomatic Python (a la the Zen of
Python) will work just fine. If you get memory errors or performance isn’t what it
should be, then follow the Zen of MicroPython and make use of the techniques and
tricks outlined in this chapter. The worst thing that can possibly happen is you learn
something new. Hopefully, you’ll overcome your gremlin and end up fist-pumping
the air while shouting “woohoo” when your special blinkenlight demo works as
expected without causing a memory error or slowing down.

184 | Chapter 13: Idiomatic MicroPython

CHAPTER 14

Next Steps

MicroPython is a relatively young project, yet it is gaining momentum all the time.

Ports targeting new hardware are in development. The implementation is improving.
Thanks to the micro:bit, a huge number of educational resources already exist. Estab‐
lished players in the “maker” and electronics space are using and promoting it in
their products (such as Adafruit). Conferences are creating interactive badges for
attendees from microcontrollers that run MicroPython. Thanks to the European
Space Agency (ESA), MicroPython may end up on payloads in space. Talks about
MicroPython are appearing at PyCons all over the world. New libraries and code for
interacting with all sorts of interesting peripherals are released every day.

This is an exciting time to get involved with the project and explore embedded pro‐
gramming with Python.

However, reading this book is but a first step. If you have a device, don’t just let it sit
in your desk drawer. Use it for a goofy weekend project, a work-related hack-day, or
as the basis of a talk at your local user group. If you have kids, share the project with
them and introduce them to programming (for example, create a motion detecting
“parent trap” that sounds an alarm when you enter their bedroom). After just a cou‐
ple of projects, you’ll start to see the potential in making use of MicroPython and the
devices upon which it runs in all sorts of interesting and previously unimagined
projects.

The Community
Why is Python’s community so important?

When you are part of a programming community, you become aware of the different
sorts of skills your peers bring to bear. You notice where people share their projects,

185

so you can learn from each other. You discover the common mistakes that people
make. You may even collaborate with the people who build the library you’re using in
your project. Ultimately, you’ll make friends and build a support network for those
times when you need help. Crucially, it offers you an opportunity to help others, gain
recognition, and contribute experience and resources back into the community. It’s a
virtuous circle.

The wider Python community has an excellent reputation for being a friendly group
of people who value openness, actively engage in outreach (just look at all the educa‐
tional projects in the Python community), and who organise some of the most inter‐
esting, diverse, and fun software conferences on the planet.

The Python community is well organised, having created the Python Software Foun‐
dation (PSF) as a rallying point for the community. It’s a volunteer-led organization
devoted to advancing open source technology related to the Python programming
language. You can join and support the PSF in its mission or even take part as a vol‐
unteer. The PSF is also a grant-giving body which supports projects that promote
Python. This is an important mechanism that facilitates community-led support and
development. If you have an idea for a MicroPython workshop that needs funding,
you should apply for a grant. The process is easy, and the grants working-group is
responsive and helpful.

Going Deeper
If you are interested in contributing code to MicroPython, porting MicroPython to a
new board, or creating libraries for MicroPython, your first stop needs to be the proj‐
ect’s website. You will find a flourishing message board, links to the source code, and
details of current ports and ports in progress. There’s also the MicroPython Lib
repository of core libraries ported to MicroPython from “regular” Python.

If you want to chat with other MicroPython users, there’s a #micropython IRC chan‐
nel on Freenode and a microbit-community on Slack.

If you want to roll up your sleeves and get coding, you should read the MicroPython
developer documentation that outlines the project’s structure, coding conventions,
and expectations when it comes to such things as testing.

Tutorials are springing up all over the place, as are projects that use MicroPython.
Adafruit has a growing number of freely available MicroPython projects and tutori‐
als. Hackaday (a popular hardware hacking, maker website) also has a growing num‐
ber of community-sourced projects for you to learn from. In 2015, there was even a
micro:bit world tour where members of the Python community took part in a sort of
digital chain letter and cooked up all sorts of interesting and educational projects for
MicroPython on the micro:bit.

186 | Chapter 14: Next Steps

http://micropython.org/
http://micropython.org/
https://github.com/micropython/micropython-lib
https://micropython-dev-docs.readthedocs.io/en/latest/index.html
https://micropython-dev-docs.readthedocs.io/en/latest/index.html
https://learn.adafruit.com/category/micropython
https://learn.adafruit.com/category/micropython
https://hackaday.io/search?term=MicroPython
https://microworldtour.github.io/

So get stuck in and remember...
Code,
Hack it,
Less is more,
Keep it simple,
Small is beautiful,

Be brave! Break things! Learn and have fun!
Express yourself with MicroPython.

Happy hacking! :-)
—The Zen of MicroPython

Going Deeper | 187

Index

A
abilities of enchantment

affordability, 58
embedded solutions, 56-59
gestureability, 57
glanceability, 57
indestructibility, 58
loveability, 59
usability, 59
wearability, 58

accelerometer, 89
and music module, 152
on Circuit Playground Express, 35

Adafruit Circuit Playground Express (see Cir‐
cuit Playground Express)

Adafruit Industries, 11
Adams, Douglas, 49
affordability, 58
agency, defined, 3
Allen, David, 24
analog pins, 101
analog-to-digital converter (ADC), 101
animation, for visual feedback, 74
articulation, 143
asynchronous protocol, 105
ATSAMD21G18 ARM Cortex M0 microproc‐

essor, 34, 36
audio (see sound)
audio skin, 18, 149
autonomy, defined, 3

B
BBC micro:bit (see micro:bit)
Beethoven, Ludwig van, 150

bit banging, 110
Bit:Bot, 169-174
bleeps and bloops (sound), 141-151
blinkenlights, 63-67
Bluetooth, 27, 41, 114
breadboard, 25
British Broadcasting Company (BBC), 10, 23
buttons, 81-86

C
C (language), 7
cables, 16
callback, 85
capacitative touch, 86-88
chip select (CS), 106-108
Circuit Playground Express, 11, 33-37

buttons with, 83-85
capacitative touch, 86-88
CircuitPython driver bundle for, 37
developer setup, 36-37
hardware, 34-36
microphone, 92
NeoPixel code, 68-70
NeoPixels, 67
networking via IR, 115-120
pins, 101
PWM control of LEDs, 66
updating, 36

CircuitPython, 36-37
driver bundle, 37
source code, 38

Clarke, Arthur C., 2, 33
coding, idiomatic (see idiomatic MicroPython)
colour LCD display (lcd160cr), 75-80

189

colour, text and background, 77-80
community, Python, 185
Computer Programming for Everybody

project, 175
connection, as step on ladder of enchantment,

60
consonants, 156

D
"Daisy Bell" (song), 158-160
daisy chain device configuration, 106
debugging, 16, 181
DiCola, Tony, 115
digital pins, 101
digital-to-analog converter (DAC), 101, 149
diphthongs, 158
duty cycles, 65

E
Electromagnetic Field Camp, 58
embedded solutions

abilities of enchantment, 56-59
concepts for assessing, 52
fundamental questions about, 51
human drives answered by, 53-56
magical aspects of, 3

(see also enchantment)
philosophy and vocabulary of, 49-62

embedded systems
and microcontrollers, 2-4
defined, 1

enchanted devices, 33
Enchanted Objects (Rose), 52
enchantment (enchanted, embedded objects)

abilities of, 56-59
steps on the ladder of, 60-62

ESP32 microcontroller
basics, 40
developer setup, 45-47
hardware, 41
networking, 41
WiFi networking, 128-136

ESP8266 microcontroller
basics, 40
developer setup, 42-45
firmware flashing, 42
hardware, 41
WebREPL, 43-45
WiFi networking, 41, 128-136

Espressif Systems, 40
European Space Agency (ESA), 10
event loop, 82
expression, artistic, 56

F
feedback, visual (see visual feedback)
filesystem, micro:bit, 27
fill, 78
finger-painting program, 88
firefly, 126
flash memory, 177
fonts, 77
fragmentation, memory, 180
Fried, Limor "ladyada", 11
frozen modules/bytecode, 178

G
gamification, 61
garbage collector (GC), 181
George Robotics Limited, 9
George, Damien

ESP8266, 132
MicroPython genesis, 9-12

gestureability, 57
gestures

as input, 89
micro:bit built-in support for, 91

glanceability, 57
GPIO (General Purpose Input and Output), 25,

99-111
I²C, 108-110
miscellaneous techniques/protocols, 110
pins, 99-103
SPI, 105-108
UART, 103

ground pins, 101

H
Hackaday, 186
Harry Potter books, 3
hex file, 27
human drives

embedded solutions and, 53-56
expression, 56
immortality, 55
omniscience, 53
safekeeping, 54

190 | Index

telepathy, 53
teleportation, 55

I
IBM 7094 computer, 158
idiomatic MicroPython, 175-184

and Zen of Python, 176
memory, 177-182
performance, 182-184
Zen of MicroPython, 177

images, for visual feedback, 71-74
immortality, 55
indestructibility, 58
infrared (IR) communication

basics, 113
Circuit Playground Express networking,

115-120
input and sensing, 81-97

accelerometers, gestures, and compasses,
89-91

buttons, 81-86
capacitative touch, 86-88
sound/light/temperature sensing, 91-95
with peripherals, 95-97

Internet of Things (IoT), 11, 39
interrupts, 16, 85, 102
I²C (inter-integrated circuit) protocol, 108-110

K
Kickstarter

and ESP8266 port, 12
and MicroPython genesis, 9

Kubrick, Stanley, 158

L
ladder of enchantment

connection, 60
gamification, 61
personalization, 60
socialization, 60
steps on, 60-62
story-ification, 61

LCD display, 75-80
LCD display-skin, 17
light emitting diodes (LEDs)

and PWM, 64-67
blinkenlights, 63-67
mechanism of operation, 63

NeoPixels, 35, 67-70
light sensing, 35, 92, 94
line colour, 78
Linux

connecting PyBoard to REPL, 21
PyBoard configuration, 20

loveability, 59

M
macOS, connecting PyBoard to REPL, 21
magic, 33

(see also enchantment)
magic echo machine, 92-94
magnetometer, 89
Martelli, Alex, 176
master (device), 105
memory

fragmentation, 180
idiomatic MicroPython, 177-182

metronome, 142
micro USB cables, 16
micro:bit, 23-31

and Mu, 28-31
basic idea behind, 24
buttons, 82
capacitative touch, 86-88
communication with non-micro:bit devices,

126-128
developer setup, 25-27
display object, 70
filesystem, 27
flashing hex file onto, 27
gesture support, 91
hardware, 25-31
image class, 71-74
microcontroller specifications, 26
music module, 151-154
networking with radio module, 120-128
pins, 99

microcontrollers
defined, 1
reasons for using, 2-4

microphones, 92, 92-94
MicroPython

and embedded systems, 2-4
as operating system, 5
basics, 1-13
C vs., 7
design philosophy, vii

Index | 191

genesis, vii, 9-12
idiomatic programming (see idiomatic

MicroPython)
project website, 8
Python and, 4-8

MicroPython Lib, 186
MISO (master in, slave out), 106
Morse code, 115-120
MOSI (master out, slave in), 106
Mosquito, 136
MQTT (Message Queue Telemetry Transport),

136-139
Mu (code editor), 28-31
music, 151-154

N
NeoPixels, 35, 67-70
networking, 113-139

Circuit Playground Express infrared,
115-120

ESP32, 41, 128-136
ESP8266, 41, 128-136
micro:bit radio module, 120-128
MQTT, 136-139

O
omniscience, 53
open drain connections, 109
operating system, MicroPython as, 5

P
Papert, Seymour, 3
parallel communication, 102
pen, 78
pentatonic scale, 152
Pereira Atencio, Carlos, 182
peripherals, sensing with, 95-97
personalization, 60
Peters, Tim, 176
phonemes, 155
phototransistor, 92
pins, 25

accessing sensing devices with, 95-97
and buttons, 83
default input states, 101
GPIO and, 99-103

pitch (of musical notes), 143-146, 158
profiling, of code, 183

programming
idiomatic (see idiomatic MicroPython)
Python community, 185

pseudobreakpoint, 182
publish/subscribe (pub/sub) protocol, 136-139
pulse density modulation (PDM), 94
pulse width modulation (PWM)

changing LED brightness with, 64-67
for controlling motor speed, 167, 170
for Morse code, 117
for pitch alteration, 143

PyBoard, 15-22
buttons, 85
colour LCD display, 75-80
developer setup, 18-22
hardware, 17
pins, 101
reflashing, 18-20

Pythagoras, 144
Python

community, 8, 185
MicroPython as implementation of, 4-8
resources for learning, 5
version 3 vs. version 2, 5

Python Software Foundation (PSF), 8, 186
Pythonic code, 175

Q
quality of service (QoS), 137
quantization, 152

R
racer bot, 169-174
radio-based interaction

basics, 114
micro:bit hardware for, 27
micro:bit networking with, 120-128

RAM, 177, 179
recording, sound, 92-94
REPL prompt, 16

accessing with Mu, 31
PyBoard and, 21
UART and, 103

robots, 163-174
racer bot, 169-174
trundle bot, 163-169

Rose, David, 3, 52-62
Rossum, Guido van, 175
Rowling, J. K., 3

192 | Index

S
safekeeping, 54
Schneier, Bruce, 39
self-expression, 56
sensing, 81

(see also input and sensing)
on Circuit Playground Express, 35
with peripherals, 95-97

sensors, 39
serial communication, 102
shift register, 107
Skoryk, Viktoriya, 9, 12
slave (device), 106
slave select (chip select), 106-108
socialization, 60
Sokolovsky, Paul, 12
sound, 141-160

bleeps and bloops, 141-151
music, 151-154
on Circuit Playground Express, 35
pitch, 143-146
recording, 92-94
speech, 154-160
waveforms, 146-148

sound sensing, 92
speech, 154-160
SPI (serial peripheral interface)

GPIO and, 105-108
I²C vs., 108

story-ification, 61
stress system, 157
synchronous data bus, 105

T
telepathy, 53
teleportation, 55
temperature sensing, 92, 94
tempo (music), 154
text, for visual feedback, 71
thermistor, 35, 92
Thumb2, 184
tick, 154
trundle bot, 163-169
tutorials, 186

2001: A Space Odyssey (film), 158

U
UART (universal asynchronous receiver/trans‐

mitter)
GPIO and, 103
I²C vs., 108
SPI vs., 105

uflash, 30
ufs, 30
usability, 59
USB cables, 16
USR button, 85

V
virtual machine (VM), 178
visual feedback, 63-80

animation, 74
blinkenlights, 63-67
images, 71-74
micro:bit display object, 70
NeoPixels, 67-70
PyBoard colour LCD display, 75-80
text, 71

volume, of sound, 149
vowels, 156

W
waveforms, 146-148
wearability, 58
WebREPL, 43-45
WiFi

ESP32, 41, 128-136
ESP8266, 41, 128-136

will (MQTT message), 137
Windows

and USB connections, 16
connecting PyBoard to REPL, 21
PyBoard configuration, 20

Z
Zen of MicroPython, 177
Zen of Python, 176

Index | 193

About the Author
Nicholas H. Tollervey is a classically trained musician, philosophy graduate, teacher,
writer, and software developer. He’s just like this biography: concise, honest, and full
of useful information.

He’s @ntoll on Twitter and blogs at http://ntoll.org/.

Colophon
The animal on the cover of Programming with MicroPython is a luna moth caterpillar
(Actias luna).

Luna moth caterpillars can be found throughout southern Canada, eastern United
States, and northern Mexico. In cooler climates, it produces one generation a year
and in warmer climates, it can produce up to three generations in a year. Females lay
400–600 eggs on the underside of leaves and they incubate for eight to thirteen days.

Newly hatched, the caterpillars feast on local sources such as hickory, butternut, and
walnut trees. These trees produce a toxic defensive chemical called juglone to inhibit
insects from dining on them. Lunas develop an enzyme that helps them tolerate
juglone in their diets.

After about a month of filling up on these plants, the caterpillar builds a cocoon. The
insect lives inside for about three weeks, then emerges as a moth. Its wing markings
reveal a crescent in the eyespot resembling a crescent moon, hence its namesake. The
adult doesn’t have a mouth or a digestive system and survives on caterpillar fat stores
for merely a week while it mates and lays eggs to begin the life cycle again.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Animal Life In The Sea and On The Land. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://twitter.com/ntoll
http://ntoll.org/
http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. What Is MicroPython?
	Why Micro?
	Why Python?
	MicroPython Genesis
	Dive In!

	Chapter 2. PyBoard
	The Hardware
	Developer Setup

	Chapter 3. BBC micro:bit
	The Hardware
	Developer Setup

	Chapter 4. Adafruit Circuit Playground Express
	The Hardware
	Developer Setup

	Chapter 5. ESP8266 / ESP32
	The Hardware
	Developer Setup
	ESP8266
	ESP32

	Chapter 6. Thinking Embedded
	Human Drives
	Abilities of Enchantment
	Steps on the Ladder of Enchantment

	Chapter 7. Visual Feedback
	Blinkenlights
	NeoPixels (Blinkenlights on Steroids)
	Text, Images, and Animation
	PyBoard Colour LCD Display

	Chapter 8. Input and Sensing
	Buttons and Capacitative Touch
	Accelerometers, Gestures, and Compasses
	Sound, Light, and Temperature
	Sensing with Peripherals

	Chapter 9. GPIO
	Pins
	UART
	SPI
	I2C
	Miscellaneous GPIO Techniques and Protocols

	Chapter 10. Networking
	Circuit Playground Express Infrared
	The micro:bit Radio
	ESP8266/32 WiFi
	MQTT

	Chapter 11. Sound and Music
	Bleeps and Bloops
	Music
	Speech

	Chapter 12. Robots
	Trundle Bot
	Racer Bot

	Chapter 13. Idiomatic MicroPython
	The Zen of MicroPython
	Memory
	Performance

	Chapter 14. Next Steps
	The Community
	Going Deeper

	Index
	About the Author
	Colophon

